• Title/Summary/Keyword: Static Collapse

Search Result 225, Processing Time 0.026 seconds

Progressive Collapse and Seismic Performance of Twisted Diagrid Buildings

  • Kwon, Kwangho;Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.223-230
    • /
    • 2014
  • In this study the progressive collapse resisting capacities of tall diagrid buildings were evaluated based on arbitrary column removal scenario, and the seismic load-resisting capacities were investigated through fragility analysis and ATC 63 procedure. As analysis model structures both regular and twisted diagrid structures were designed and their load-resisting capacities were compared by nonlinear static and dynamic analyses. The analysis results showed that the progressive collapse potential of twisted buildings decreased as the twisting angle increased, but the seismic fragility or the probability of failure decreased as the twisting angle increased.

Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained

  • Hou, Jian;Song, Li
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.237-247
    • /
    • 2016
  • Progressive collapse resistance of RC buildings can be analyzed by considering column loss scenarios. Using finite element analysis and a static test, the progressive collapse process of a RC frame under monotonic vertical displacement of a side column was investigated, simulating a column removal scenario. A single-story 1/3 scale RC frame that comprises two spans and two bays was tested and computed, and downward displacement of a side column was placed until failure. Our study offers insight into the failure modes and progressive collapse behavior of a RC frame. It has been noted that the damage of structural members (beams and slabs) occurs only in the bay where the removal side column is located. Greater catenary action and tensile membrane action are mobilized in the frame beams and slabs, respectively, at large deformations, but they mainly happen in the direction where the frame beams and slabs are laterally restrained. Based on the experimental and computational results, the mechanism of progressive collapse resistance of RC frames at different stages was discussed further. With large deformations, a simplified calculation method for catenary action and tensile membrane action is proposed.

Dynamic buckling analysis of a composite stiffened cylindrical shell

  • Patel, S.N.;Bisagni, C.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.509-527
    • /
    • 2011
  • The paper investigates the dynamic buckling behaviour of a laminated composite stiffened cylindrical shell using the commercial finite element code ABAQUS. The numerical model of the composite shell is validated by static tests. In particular, the experimental collapse test is numerically simulated by a quasi static analysis carried out by both ABAQUS/Standard and ABAQUS/Explicit. The behaviour in the post-buckling field and the collapse load obtained by the analyses are close to the experimental data. The validated model is then used to study the dynamic buckling behaviour with ABAQUS/Explicit. The effects of the loading magnitude and of the loading duration are investigated, implementing in the analysis also first-ply failure criteria. It is observed that the dynamic buckling load is highly affected by the loading duration.

Strength Evaluation on CFRP Hat-shaped Sectional Members According to Changes in Temperature Under Hygrothermal Environment (온도 변화에 따른 열습 환경하에서의 CFRP 모자형 단면부재의 강도평가)

  • Yang, Yongjun;Kook, Hyun;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.892-896
    • /
    • 2012
  • CFRP composites with light weight, high strength, and high elasticity by comparing with metal are widely used rather than previous steel plates. However, CFRP composite material has the weakness at hydrothermal and collapsed impact environment. Especially, moisture absorption into composite material can change molecule arrangement and chemical properties under hydrothermal environment. And static collapse experiment is the research in the differences of absorbed energy and deformation mode between moisture and non-moisture absorbed specimens. This study is compared and analyzed on the progress change of moisture absorption ratio after setting up the temperatures of 60 and 80 degrees C in order to comprehend how the change in the temperature influences on moisture absorption status inside CFRP composite materials.

A Study on a Repair Technique for a Reinforced Concrete Frame Subjected to Seismic Damage Using Prestressing Cable Bracing

  • Lee, Jin Ho;EI-Ganzory, Hisham
    • Architectural research
    • /
    • v.3 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • The proposed building upgrading technique employs prestressing cables to function as bracing to improve the seismic performance during future events. A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is assessed and upgraded using the proposed technique. Both existing and upgraded buildings are evaluated in regard of seismic performance parameters performing static lateral load to collapse analysis and dynamic nonlinear time history analysis as well. To obtain realistic comparison of seismic performance between existing and upgraded frames, each frame is subjected to its critical ground motion that has strength demand exceeding the building strength supply. Furthermore, reliability of static lateral load to collapse analysis as a substitute to time history analysis is evaluated. The results reveal that the proposed upgrading technique improves the stiffness distribution compared to the ideal distribution that gives equal inter-story drift. As a result, the upgraded building retains more stories that contribute to energy dissipation. The overall behavior of upgraded building beyond yield is also enhanced due to the gradual change of building stiffness as the lateral load increases.

  • PDF

A Study on the Analysis and Control of Voltage Stability (전압안정성 분석 및 제어에 관한 연구)

  • You, Seok-Koo;Kim, Kyu-Ho;Jang, Su-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.64-66
    • /
    • 1993
  • This paper presents an efficient method to calculate voltage collapse point and to improve static voltage stability. To evaluate static voltage stability in power systems. it is necessary to get critical loading points. For this purpose, we use linear programming to calculate efficiently voltage collapse point. And if index value becomes larger than given threshold value, vol tags stability is improved by compensation of reactive power at selected bus. This algorithm is verified by simulation on the sample system.

  • PDF

Crush characteristics of the laminated composite box tubes (섬유강화 복합재료 Box Tube의 Crush거동)

  • 강수춘;전완주
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.65-72
    • /
    • 1991
  • This paper presents the results of static crushing test that was conducted to characterize the energy absorption and collapse characteristics of composite box tubes. Fifteen specimens were fabricated with woven fabric prepreg using [0/90] glass/epoxy and were autoclave cured. Quasistatic compression test was performed on them. Collapse mode and energy absorption capacity vary significantly as a function of the thickness and length of a square side of composite box tube.

  • PDF

Influence of Stacking Sequence Conditions on the Characteristics of Impact Collapse using CFRP Thin-Wall Structures (CFRP 박육부재의 적층조건이 충격압궤특성에 미치는 영향)

  • Kim, Yeong-Nam;Choe, Hyo-Seok;Cha, Cheon-Seok;Im, Gwang-Hui;Jeong, Jong-An;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2945-2951
    • /
    • 2000
  • Because of the inherent flexibility in their design for improved material properties, composites have wide applications in aerospace vehicles and automobiles. The purpose of this study is to investigate the energy absorption characteristics of CFRP( Carbon Fiber Reinforced Plastics); tubes on static and impact tests. Static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine)and impact compression tests have been carried out using the vertival crushing testing machine. When such tubes were subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that control the crushing process. The collapse characteristics and energy absorption were examined. Trigger and interlaminar number affect energy absorption capability of CFRP tubes.

Effects of dead loads on the static analysis of plates

  • Takabatake, Hideo
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.761-781
    • /
    • 2012
  • The collapse of structures due to snow loads on roofs occurs frequently for steel structures and rarely for reinforced concrete structures. Since the most significant difference between these structures is related to their ability to handle dead loads, dead loads are believed to play an important part in the collapse of structures by snow loads. As such, the effect of dead loads on displacements and stress couples produced by live loads is presented for plates with different edge conditions. The governing equation of plates that takes into account the effect of dead loads is formulated by means of Hamilton's principle. The existence and effect of dead loads are proven by numerical calculations based on the Galerkin method. In addition, a closed-form solution for simply supported plates is proposed by solving, in approximate terms, the governing equation that includes the effect of dead loads, and this solution is then examined. The effect of dead loads on static live loads can be explained explicitly by means of this closed-form solution. A method that reflects the effects of dead loads on live loads is presented as an example. The present study investigates an additional factor in lightweight roof structural elements, which should be considered due to their recent development.

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.