• Title/Summary/Keyword: Stathmin 1

Search Result 6, Processing Time 0.02 seconds

Stathmin 1 in normal and malignant hematopoiesis

  • Machado-Neto, Joao Agostinho;Saad, Sara Teresinha Olalla;Traina, Fabiola
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.660-665
    • /
    • 2014
  • Stathmin 1 is a microtubule destabilizer that plays an important role in cell cycle progression, segregation of chromosomes, clonogenicity, cell motility and survival. Stathmin 1 overexpression has been reported in malignant hematopoietic cells and Stathmin 1 inhibition reduces the highly proliferative potential of leukemia cell lines. However, during the differentiation of primary hematopoietic cells, Stathmin 1 expression decreases in parallel to decreases in the proliferative potential of early hematopoietic progenitors. The scope of the present review is to survey the current knowledge and highlight future perspectives for Stathmin 1 in normal and malignant hematopoiesis, with regard to the expression, function and clinical implications of this protein.

Stathmin is a Marker of Progression and Poor Prognosis in Esophageal Carcinoma

  • Wang, Feng;Xuan, Xiao-Yan;Yang, Xuan;Cao, Lei;Pang, Li-Na;Zhou, Ran;Fan, Qin-Xia;Wang, Liu-Xing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3613-3618
    • /
    • 2014
  • Stathmin, also called oncoprotein 18, is a founding member of the family of microtubule-destabilizing proteins that play a critical role in the regulation of mitosis. At the same time stathmin has been recognized as one of responsible factors in cancer cells. The aim of this study was to assess stathmin status, its correlations with clinicopathological parameters and its role as a progosnostic marker in EC patients. The protein and mRNA levels of stathmin were examined byimmunohistochemistry (IHC) and in situ hybridization in 100EC tissues and adjacent noncancerous tissues. mRNA and protein expression of stathmin in three EC cell lines(EC9706, ECa109, EC1 commonly used in research) were also analyzed using immunocytochemistry, western blot and in situ hybridization. The prognostic value of Stathmin expression within the tumor tissues were assessed by Cox regression and Kaplan-Meier analysis. We showed that stathmin expression was significantly higher in EC tissues than in adjacent noncancerous tissues. High stathmin immunostaining score in the EC was positively correlated with tumor differentiation, Tumor invasion, Lymph node metastases, and TNM stage. In addition, we demonstrated that three EC cell lines examined, were constitutively expressing a high level of stathmin. Of those, EC-1 showed the strongest mRNA and protein expression for the stathmin analyzed. Kaplan-Meier analysis showed that significantly longer 5-year survival rate was seen in EC patients with high Stathmin expression, compared to those with low expression of Stathmin expression. Furthermore, multivariate Cox proportional hazard analyses revealed that Stathmin was an independent factors affecting the overall survival probability. In conclusion, our data provide a basis for the concept that stathmin might be associated with EC development and progression. High levels of Stathmin expression in the tumor tissues may be a good prognostic marker for patients with EC.

Regulation of melanocyte apoptosis by Stathmin 1 expression

  • Zhang, Yan;Xiong, Jianjun;Wang, Jiali;Shi, Xianping;Bao, Guodong;Zhang, Yang;Zhu, Zhenyu
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.765-770
    • /
    • 2008
  • Undesirable hyperpigmentation that can arise from increased melanocyte activity may be alleviated by targeting active melanocytes for apoptosis. The role of Stathmin 1 as an important regulator of microtubule dynamics is well documented. The current study examined the potential of Stathmin 1-targeting strategies in eliminating active melanocytes. A vector to overexpress Stathmin 1 and vectors to express three distinct small hairpin RNAs to knockdown Stathmin 1 expression in normal melanocytes were produced and in cell cultures acted accordingly. Both overexpression and knockdown of Stathmin 1 led to a marked increase in melanocyte apoptosis, as indicated by the accumulation of apoptotic cells and increased levels of cleaved caspase-3. Both up- and down-regulation of Stathmin 1 expression inhibited the activity of differentiated melanocytes, as indicated by decreases in both melanin production and tyrosinase activity. Taken together, these results indicate that hyperactive melanocytes can be inhibited by altering Stathmin 1 expression.

Mitogenic Estrogen Metabolites Alter the Expression of β-estradiol-regulated Proteins Including Heat Shock Proteins in Human MCF-7 Breast Cancer Cells

  • Kim, Seong Hwan;Lee, Su-Ui;Kim, Myung Hee;Kim, Bum Tae;Min, Yong Ki
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.378-384
    • /
    • 2005
  • Estrogen metabolites are carcinogenic. The comparative mitogenic activities of $17{\beta}$-estradiol (E2) and four metabolites, 2-hydroxyestradiol (2-OHE2), 4-hydroxyestradiol (4-OHE2), $16{\alpha}$-hydroxyestrone ($16{\alpha}$-OHE1) and 2-methoxyestradiol (2-ME), were determined in estrogen receptor(ER)-positive MCF-7 human breast cancer cells. Each of the E2 metabolites caused proliferation of the MCF-7 cells, but only E2 and $16{\alpha}$-OHE1 induced a greater than 20-fold increases in transcripts of the progesterone receptor (PR) gene, a classical ER-mediated gene. This suggests that the mitogenic action of E2 and $16{\alpha}$-OHE1 could result from their effects on gene expression via the ER. E2 metabolites altered the expression of E2-regulated proteins including heat shock proteins (Hsps). $16{\alpha}$-OHE1 and 2-ME as well as E2 increased levels of Hsp56, Hsp60, $Hsp90{\alpha}$ and Hsp110 transcripts, and the patterns of these inductions resembled that of PR. Hsp56 and Hsp60 protein levels were increased by all the E2 metabolites. Levels of the transcripts of 3 E2-upregulated proteins (XTP3-transactivated protein A, protein disulfide isomerase-associated 4 protein and stathmin 1) and an E2-downregulated protein (aminoacylase 1) were also affected by the E2 metabolites. These results suggest that the altered expression of Hsps (especially Hsp56 and Hsp60) by E2 metabolites such as E2, $16{\alpha}$-OHE1 and 2-ME could be closely linked to their mitogenic action.

Gene Expression Profiling in the Pituitary Gland of Laying Period and Ceased Period Huoyan Geese

  • Luan, Xinhong;Cao, Zhongzan;Xu, Wen;Gao, Ming;Wang, Laiyou;Zhang, Shuwei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.921-929
    • /
    • 2013
  • Huoyan goose is a Chinese local breed famous for its higher laying performance, but the problems of variety degeneration have emerged recently, especially a decrease in the number of eggs laid. In order to better understand the molecular mechanism that underlies egg laying in Huoyan geese, gene profiles in the pituitary gland of Huoyan geese taken during the laying period and ceased period were investigated using the suppression subtractive hybridization (SSH) method. Total RNA was extracted from pituitary glands of ceased period and laying period geese. The cDNA in the pituitary glands of ceased geese was subtracted from the cDNA in the pituitary glands of laying geese (forward subtraction); the reverse subtraction was also performed. After sequencing and annotation, a total of 30 and 24 up and down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These genes mostly related to biosynthetic process, cellular nitrogen compound metabolic process, transport, cell differentiation, cellular protein modification process, signal transduction, small molecule metabolic process. Furthermore, eleven genes were selected for further analyses by quantitative real-time PCR (qRT-PCR). The qRT-PCR results for the most part were consistent with the SSH results. Among these genes, Synaptotagmin-1 (SYT1) and Stathmin-2 (STMN2) were substantially over-expressed in laying period compared to ceased period. These results could serve as an important reference for elucidating the molecular mechanism of higher laying performance in Huoyan geese.