• Title/Summary/Keyword: State-space approach

Search Result 355, Processing Time 0.03 seconds

Dynamic modeling and structural reliability of an aeroelastic launch vehicle

  • Pourtakdoust, Seid H.;Khodabaksh, A.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.263-278
    • /
    • 2022
  • The time-varying structural reliability of an aeroelastic launch vehicle subjected to stochastic parameters is investigated. The launch vehicle structure is under the combined action of several stochastic loads that include aerodynamics, thrust as well as internal combustion pressure. The launch vehicle's main body structural flexibility is modeled via the normal mode shapes of a free-free Euler beam, where the aerodynamic loadings on the vehicle are due to force on each incremental section of the vehicle. The rigid and elastic coupled nonlinear equations of motion are derived following the Lagrangian approach that results in a complete aeroelastic simulation for the prediction of the instantaneous launch vehicle rigid-body motion as well as the body elastic deformations. Reliability analysis has been performed based on two distinct limit state functions, defined as the maximum launch vehicle tip elastic deformation and also the maximum allowable stress occurring along the launch vehicle total length. In this fashion, the time-dependent reliability problem can be converted into an equivalent time-invariant reliability problem. Subsequently, the first-order reliability method, as well as the Monte Carlo simulation schemes, are employed to determine and verify the aeroelastic launch vehicle dynamic failure probability for a given flight time.

A two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.593-607
    • /
    • 2022
  • To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.

The Definition of Outer Space and the Air/Outer Space Boundary Question (우주의 법적 지위와 경계획정 문제)

  • Lee, Young-Jin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.427-468
    • /
    • 2015
  • To date, we have considered the theoretical views, the standpoint of states and the discourse within the international community such as the UN Committee on the Peaceful Uses of Outer Space(COPUOS) regarding the Air/Outer Space Boundary Question which is one of the first issues of UN COPUOS established in line with marking the starting point of Outer Space Area. As above mentioned, discussions in the United Nations and among scholars of within each state regarding the delimitation issue often saw a division between those in favor of a functional approach (the functionalists) and those seeking the delineation of a boundary (the spatialists). The spatialists emphasize that the boundary between air and outer space should be delimited because the status of outer space is a type of public domain from which sovereign jurisdiction is excluded, as stated in Article 2 of Outer Space Treaty. On the contrary art. I of Chicago Convention is evidence of the acknowledgement of sovereignty over airspace existing as an international customary law, has the binding force of which exists independently of the Convention. The functionalists, backed initially by the major space powers, which viewed any boundary demarcation as possibly restricting their access to space, whether for peaceful or non-military purposes, considered it insufficient or inadequate to delimit a boundary of outer space without obvious scientific and technological evidences. Last more than 50 years there were large development in the exploration and use of outer space. But a large number states including those taking the view of a functionalist have taken on a negative attitude. As the element of location is a decisive factor for the choice of the legal regime to be applied, a purely functional approach to the regulation of activities in the space above the Earth does not offer a solution. It seems therefore to welcome the arrival of clear evidence of a growing recognition of and national practices concerning a spatial approach to the problem is gaining support both by a large number of States as well as by publicists. The search for a solution to the problem of demarcating the two different legal regimes governing the space above Earth has undoubtedly been facilitated and a number of countries including Russia have already advocated the acceptance of the lowest perigee boundary of outer space at a height of 100km. As a matter of fact the lowest perigee where space objects are still able to continue in their orbiting around the earth has already been imposed as a natural criterion for the delimitation of outer space. This delimitation of outer space has also been evidenced by the constant practice of a large number of States and their tacit consent to space activities accomplished so far at this distance and beyond it. Of course there are still numerous opposing views on the delineation of a outer space boundary by space powers like U.S.A., England, France and so on. Therefore, first of all to solve the legal issues faced by the international community in outer space activities like delimitation problem, there needs a positive and peaceful will of international cooperation. From this viewpoint, President John F. Kennedy once described the rationale behind the outer space activities in his famous "Moon speech" given at Rice University in 1962. He called upon Americans and all mankind to strive for peaceful cooperation and coexistence in our future outer space activities. And Kennedy explained, "There is no strife, ${\ldots}$ nor any international conflict in outer space as yet. But its hazards are hostile to us all: Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again." This speech seems to even present us in the contemporary era with ample suggestions for further peaceful cooperation in outer space activities including the delimitation of outer space.

Systems Studies and Modeling of Advanced Life Support Systems

  • Kang, S.;Ting, K.C.;Both, A.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.2
    • /
    • pp.41-49
    • /
    • 2001
  • Advanced Life Support Systems(ALSS) are being studied to support human life during long-duration space missions. ALSS can be categorized into four subsystems: Crew, Biomass Production, Food Processing and Nutrition, Waste Processing and Resource Recovery. The System Studies and Modeling (SSM) team of New Jersey-NASA Specialized Center of Research and Training (NJ-NSCORT) has facilitated and conducted analyses of ALSS to address systems level issues. The underlying concept of the SSM work is to enable the effective utilization of information to aid in planning, analysis, design, management, and operation of ALSS and their components. Analytical tools and computer models for ALSS analyses have been developed and implemented for value-added information processing. The results of analyses heave been delivered through the internet for effective communication within the advanced life support (ALS) community. Several modeling paradigms have been explored by developing tools for use in systems analysis. they include objected-oriented approach for top-level models, procedureal approach for process-level models, and application of commercially available modeling tools such as $MATLAB^{R}$/$Simulink^{R}$. Every paradigm has its particular applicability for the purpose of modeling work. an overview is presented of the systems studies and modeling work conducted by the NJ-NSCORT SSM team in its efforts to provide systems analysis capabilities to the ALS community. The experience gained and the analytical tools developed from this work can be extended to solving problems encountered in general agriculture.

  • PDF

Intelligent Digital Redesign for Uncertain Nonlinear Systems Using Power Series (Powrer Series를 이용한 불확실성을 갖는 비선형 시스템의 지능형 디지털 재설계)

  • Sung Hwa Chang;Park Jin Bae;Go Sung Hyun;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.881-886
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent tile complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of tile digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

ORBITAL MANEUVER USING TWO-STEP SLIDING MODE CONTROL (2단 슬라이딩 제어기법을 이용한 인공위성의 궤도조정)

  • 박종옥;이상욱;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.235-244
    • /
    • 1998
  • The solutions of orbital maneuver problem using the sliding mode control in the presence of the erath gravitational perturbations is obtained. Especially, the optimization of consuming fuel for maneuver is performed. The impulsive solution to Lambert's problem using the combined equation method to minimize total ${\Delta}V is used for the desired orbit and the maneuver times. Two-step sliding mode control method is introduced for satisfying the boundary conditions of finite-thrust rendezvous problem at the end of maneuver time. Using the new approach to the orbit maneuver problem, two-step sliding mode control, orbit maneuvers are processed. The solutions to a rendezvous using the optimal control are obtained, and they are compared to the results by two-step sliding control.According to the new approach for orbit maneuver, the thrust-coast-thrust type controller is obtained to make satellite to track desired Lambert's orbit, and the total ${\Delta}V$ required for maneuver is resonable in comparison with the impulsive solution to Lambert's problem. The final state variables, also are close to the boundary conditions at the end of maneuver times.

  • PDF

Design of LQR Controller for Thermal Management System of 5kW Solid Oxide Fuel Cell (5kW급 고체 산화물 연료전지 열관리 계통 LQR 상태 궤환 제어기 설계)

  • Jeong, Jin Hee;Han, Jae Young;Sung, Yong Wook;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.505-511
    • /
    • 2015
  • Solid oxide fuel cell operate at high temperature ($800{\sim}1000^{\circ}C$). High temperature have an advantage of system efficiency, but a weak durability. In this study, linear state space controller is designed to handle the temperature of solid oxide fuel cell system for proper thermal management. System model is developed under simulink environment with Thermolib$^{(R)}$. Since the thermally optimal system integration improves efficiency, very complicated thermal integration approach is selected for system integration. It shows that temperature response of fuel cell stack and catalytic burner are operated at severe non-linearity. To control non-linear temperature response of SOFC system, gain scheduled linear quadratic regulator is designed. Results shows that the temperature response of stack and catalytic burner follows the command over whole ranges of operations.

The Discontinuous Conduction Mode(DCM) Modeling of DC/DC Converter and Critical Characteristic using Average Model of Switch (스위치 평균 모델을 이용한 DC/DC 컨버터의 전류불연속모드 모델링과 임계특성에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.34-43
    • /
    • 2008
  • The state-space average model is extended to buck-boost, and buck-boost topology switching mode DC/DC converters and modified to have higher precision without increment of computation. The modified model is used in continuous conduction mode(CCM) switching DC/DC converters and some significant conclusions are derived. This paper discusses the discontinuous conduction mode(DCM) modeling of DC/DC converter and critical characteristic using average model of switch. Average model of switch approach is expended to the modeling of boundary conduction mode DC/DC converters that operate at the boundary between continuous conduction mode(CCM) and discontinuous conduction mode(DCM). Frequency responses predicted by the average model of switch are verified by simulation and experiment. A prototype featuring 15[V] input voltage, 24[V] output voltage, and 24[W] output power using MOSFET.

Mid-course Trajectory Optimization for Boost-Glide Missiles Based on Convex Programming (컨벡스 프로그래밍을 이용한 추진-활공 유도탄의 중기궤적 최적화)

  • Kwon, Hyuck-Hoon;Hong, Seong-Min;Kim, Gyeong-Hun;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • Mid-course trajectory of the missiles equipped with seeker should be designed to detect target within FOV of seeker and to maximize the maneuverability at the point of transition to terminal guidance phase. Because the trajectory optimization problems are generally hard to obtain the analytic solutions due to its own nonlinearity with several constraints, the various numerical methods have been presented so far. In this paper, mid-course trajectory optimization problem for boost-glide missiles is calculated by using SOCP (Second-Order Cone Programming) which is one of convex optimization methods. At first, control variable augmentation scheme with a control constraint is suggested to reduce state variables of missile dynamics. And it is reformulated using a normalized time approach to cope with a free final time problem and boost time problem. Then, partial linearization and lossless convexification are used to convexify dynamic equation and control constraint, respectively. Finally, the results of the proposed method are compared with those of state-of-the-art nonlinear optimization method for verification.

An Algorithm For Approximating The Performance of Multi-mode Network System Using Algebraic Property of System States (시스템 상태의 대수적 성질을 이용한 다중모드 네트워크 시스템 성능 근사계산 알고리즘)

  • Oh, Dae-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.127-137
    • /
    • 2009
  • A practical algorithm of generating most probable states in decreasing order of probability of the network system state is suggested for approximating the performance of multi-mode network system using algebraic structure of the system states. Most complex system having network structure with multi-mode unit state is difficult to evaluate the performance or reliability due to exponentially increasing size of state space. Hence not an exact computing method but an approximated one is reasonable approach to solve the problem. To achieve the goal we should enumerate the network system states in order as a pre-processing step. In this paper, we suggest an improved algorithm of generating most probable multi-mode states to get the ordered system states efficiently. The method is compared with the previous algorithms in respective to memory requirement and empirical computing time. From the experiment proposed method has some advantages with regard to the criterion of algorithm performance. We investigate the advantages and disadvantage by illustrating experiment examples.