• Title/Summary/Keyword: State-space Controller

Search Result 339, Processing Time 0.03 seconds

Direct Current Control Method Based On One Cycle Controller for Double-Frequency Buck Converters

  • Luo, Quanming;Zhi, Shubo;Lu, Weiguo;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.410-417
    • /
    • 2012
  • In this paper, a direct current control method based on a one-cycle controller (DCOCC) for double frequency buck converters (DF buck) is proposed. This control method can make the average current through the high frequency and low frequency inductors of a DF buck converter equal. This is similar to the average current control method. However, the design of the loop compensator is much easier when compared with the average current control. Since the average current though the high frequency and low frequency inductors is equivalent, the current stress of the high frequency switches and the switch losses are minimized. Therefore, the efficiency of the DF buck converter is improved. Firstly, the operation principle of DCOCC is described, then the small signal models of a one cycle controller and a DF buck converter are presented based on the state space average method. Eventually, a system block diagram of the DCOCC controlled DF buck is established and the compensator is designed. Finally, simulation and experiment results are given to verify the correction of the theory analysis.

Constrained multivariable model based predictive control application to nonlinear boiler system (제약조건을 갖는 다변수 모델 예측 제어기의 비선형 보일러 시스템에 대한 적용)

  • 손원기;이명의;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.160-163
    • /
    • 1996
  • This paper deals with MCMBPC(Multivariable Constrained Model Based Predictive Controller) for nonlinear boiler system with noise and disturbance. MCMBPC is designed by linear state space model obtained from some operating point of nonlinear boiler system and Kalman filter is used to estimate the state with noise and disturbance. The solution of optimization of the cost function constrained on input and/or output variables is achieved using quadratic programming, viz. singular value decomposition (SVD). The controller designed is shown to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

OPTIMAL LQ CONTROL OF BUCK SWITCHING REGULATOR (스위칭 레귤레이터의 최적 LQ 제어)

  • Yoo, K.S.;Kwon, O.K.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.401-404
    • /
    • 1989
  • In this paper an optimal LQ controller is designed for the output characteristic improvement of buck-type switching regulators. State-space averaging method is adopted for modelling of switching regulators. The LQ controller is derived via an unified operator form for the application to both continuous-time and discrete-time control systems. Some design parameters of the LQ controller are chosen through a computer simulation and the LQ controller is implemented by analog circuits.

  • PDF

Fuzzy control of a robot manipulator in Cartesian space (Cartesian 공간에서 로봇 머니퓰레이터의 퍼지제어)

  • 곽희성;강철구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.165-173
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic maniprlators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller, This controller is applied to the tracking control of robotic manipulators in Cartesian space. Three dimensional look-up table is used to reduce the computational time in rel-time control. Simulation and experimental studies are conducted to evaluate the control performance for the two axis direct drive SCARA robot system.

  • PDF

State-Space Model Identification of Arago's Disk System (아라고 원판 시스템의 상태공간 모델 식별)

  • Kang, Ho-Kyun;Choi, Soo-Young;Choi, Goon-Ho;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2687-2689
    • /
    • 2000
  • In many cases the systems are so complex that it is not possible to obtain reasonable models using physical insight. Also a model based on physical insight contains a number of unknown parameters even if the structure is derived from physical laws. These problems can be solved by system identification. In this paper, Arago's disk system which has both stable and unstable regions is selected as an example for identification and a state-space model is identified using tailor-made model structure of this system. In stable region, a state-space model of Arago's disk system is identified through open loop experiment and a state-space model of unstable region is identified through closed loop experiment after using fuzzy controller to stabilize unstable system.

  • PDF

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

Design of Buck Converter Controller in the Photovoltaic Power Conditioning System (태양광 발전시스템에서의 벅 컨버터 제어기 설계)

  • Jung, Seung-Hwan;Choy, Ick;Im, Ji-Hoon;Choi, Ju-Yeop;An, Jin-Ung;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.377-382
    • /
    • 2009
  • modelling of the buck converter in photovoltaic power conditioning system is not a possibility of doing with input-output relationship from existing procedures. Because the input current and voltage of the buck converter in fluctuate at any time. The controller which design with the method which has like this error cannot have a good efficiency. In this paper, firstly, in order to design accurate controller of buck converter, new model is proposed. The modeling used a state-space averaging method and came to accomplish. Secondly, the process which design the controller is described. Finally, the simulation results are analyzed.

  • PDF

Sliding Mode Control for Current Distribution Control in Paralleled Positive Output Elementary Super Lift Luo Converters

  • Kumar, Kuppan Ramash;Jeevananthan, Seenithangam
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.639-654
    • /
    • 2011
  • This paper presents a Current Distribution Control design for Paralleled Positive Output Elementary Super Lift Luo Converters (PPOESLLCs) operated in Continuous Conduction Mode using a Sliding Mode Controller (SMC). Manipulating the higher current requirement of the load through the paralleling of POESLLCs, results in a current inequality. This is mainly due to dissimilarities in the power semiconductor switches and circuit components used in POESLLCs, which may lead to converter failures. In order to balance the proper load current sharing and the load voltage regulation of PPOESLLCs, a SMC is developed. The SMC is designed for the inherently variable-structured of POESLLCs by using the state-space average based model. The static and dynamic performance of the developed controller with PPOESLLCs is validated for its robustness to perform over a wide range of operating conditions through both a laboratory prototype and MatLab/Simulink models, which are compared with a Proportional-Integral (PI) controller. Theoretical analysis, simulation and experimental results are presented to demonstrate the feasibility of the developed SMC along with the complete design procedure.

A New Improved Integral Variable Structure Controller for Uncertain Linear Systems (불확실 선형 시스템을 위한 새로운 개선된 적분 가변구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.4
    • /
    • pp.177-183
    • /
    • 2001
  • In this paper, a new variable structure controller is designed for the tracker control of uncertain general plants so that the output of plants can controlled to a given arbitrary point in state space. By using the error between the steady state value of the output and the given reference, the sliding surface is defined, in advance, the surface from an initial state to the given reference without any reaching phase. A corresponding control input to satisfy the existence condition of the sliding mode is suggested to control the output on the predefined surface. Therefore the output controlled by the proposed controller is completely robust and identical to that of the sliding surface. Through an example, the usefulness is verified.

  • PDF

Formation Flying of small Satellites Using Coulomb Force

  • Lee, Dong-Hun;Lee, Hyun-Jae;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.84-90
    • /
    • 2006
  • The formation flying of satellites has been identified as an enabling technology for many future space missions. The application of conventional thrusters for formation flying usually results in high cost, limited life-time, and a large weight penalty. Various methods including the use of coulomb forces have been considered as an alternative to the conventional thrusters. In the present investigation, we investigate the feasibility of achieving the desired formation using Coulomb forces. This method has several advantages including low cost, light weight and no contamination. A simple controller based on the relative position and velocity errors between the leader and follower satellites is developed. The proposed controller is applied to circular formations considering the effects of disturbances in initial formation conditions as well as system nonlinearity. Results of the numerical simulation state that the proposed controller is successful in establishing circular formations of leader and follower satellites, for a formation size below 100 m.