• 제목/요약/키워드: State-Variable Feedback Controller

검색결과 60건 처리시간 0.031초

전기-유압 서어보 시스템의 시간-지연 제어기 설계 (Time-Delayed Feedback Controller Design for a Electro-Hydraulic Servo System)

  • 김수홍;원상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.342-345
    • /
    • 1989
  • In this paper, a controller design for a electro-hydraulic servo system is presented. When state variables of the system are not directly measurable for feedback control, it is very difficult to satisfy the given requirements for the system output control. The proposed design method is based on the feeding back of the output variable and it's time delayed values.

  • PDF

가변 풍량 유닛에 대한 적분기를 가진 상태 궤환 제어에 관한 연구 (A Study on the State feedback with Integral Control for a Variable Air Volume Unit)

  • 박세화
    • 한국산학기술학회논문지
    • /
    • 제1권2호
    • /
    • pp.9-14
    • /
    • 2000
  • 건물의 에너지 효율과 절약을 위해 최근 주목을 많이 받고 있는 가변 풍량 유닛(VAV)에 대해 실제적인 적용을 위한 적분기를 가진 상태 궤환 제어기를 연구한다. 디지털 제어기에 적합하도록 제어기를 개발하게 되며, 디지털 제어기는 결과적으로 대상으로 하는 실내 공간의 온도와 급기 유량으로부터 VAV 유닛 댐퍼의 개도를 조절한다. 설정 온도의 변화와 외부 온도의 변화등의 조건에 대해 모의 실험이 수행되었으며, 단순화된 대상 실내 공간과 댐퍼 구동기의 모델링이 고려되어 제어기의 이득 파라미터와 시스템의 동특성과의 관계를 고찰한다.

  • PDF

가변구조 적응모델 추종제어 시스템에 관한 연구 (A Study on the Variable Structure Adaptive Model Following Control Systems)

  • 허노재;최종문;한만춘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1983년도 하계학술회의강연.논문초록집
    • /
    • pp.135-138
    • /
    • 1983
  • This paper studies a variable structure adaptive model following control system which can control a plant in which the parameters of the controlled plant can not be estimated because they vary with time and in which the controlled plant has noise. The values of the feedback gain matrices for given states are obtained the equivalent control law, and the adaptive controller has been designed using the adaptive mechanism which switches the matrices. The adaptive controller minimizes the state error vector, that is, the difference between the state vector of the model and the state vector of the controlled plant. A controlled plant which has time varying parameters, a controlled plant which has only noise, and a controlled plant which has both have been controlled by the designed adaptive controller. The continuous single input-output system has been analysed by computer. This control system may be used to control practical systems by the addition of a microcomputer.

  • PDF

상태공간 모델링에 의한 공작기계용 수냉각기의 최적제어기 설계 (Optimum Controller Design of a Water Cooler for Machine Tools Based on the State Space Model)

  • 정석권;김상호
    • 설비공학논문집
    • /
    • 제23권12호
    • /
    • pp.782-790
    • /
    • 2011
  • Typical temperature control methods of a cooler for machine tools are hot-gas bypass and compressor variable speed control. The hot-gas bypass system has been widely used to control the cooler temperature in many general industrial fields. On the contrary, the compressor variable speed control is focused on special fields such as aerospace and high precision machine tools which need high precision control. The variable speed control system usually has two control variables such as target temperature and superheat. In other words, the variable speed control system is basically multi-input multi-output(MIMO) system. In spite of MIMO system, the proportional integral derivative(PID) feedback control methodology that based on single-input single-output (SISO) system is generally used for designing the variable speed control system. Therefore, it is inevitable to describe transfer functions for dynamic behaviors of every controlled variables and decide the PID gains with tremendous iteration process. Moreover, the designed PID gains do not provide optimum system performances. To solve these problems, high performance controller design method based on a state space model is suggested in this paper. An optimum controller is designed to minimize both control errors and energy inputs. This method was more simple to describe dynamic behaviors and easier to design the cooler controller which is MIMO system.

근접 센서를 이용한 로봇 손의 파지 충격 개선 (Grasping Impact-Improvement of Robot Hands using Proximate Sensor)

  • 홍예선;진성무
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.42-48
    • /
    • 1999
  • A control method for a robot hand grasping a object in a partially unknown environment will be proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Particularly, the finger joints were driven servo-pneumatically in this study. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases ; fast aproach, slow transitional contact and contact force control. That is, the fingertip approached to the object with full speed, until the output signal of the proximate sensor began to change. Within the perating range of the proximate sensor, the finger joint was moved by a state-variable feedback position controller in order to obtain a smooth contact with the object. The contact force of fingertip was then controlled using the blocked-line pressure sensitivity of the flow control servovalve for finger joint control. In this way, the grasping impact could be reduced without reducing the object approaching speed. The performance of the proposed grasping method was experimentally compared with that of a open loop-controlled one.

  • PDF

적분보상형 가변구조제어기법을 이용한 유도 전동기 위치제어 (Induction Motor Position Control Using Integral-Compensating Variable Structure Control Algorithm)

  • 강문호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권6호
    • /
    • pp.323-332
    • /
    • 2003
  • This paper proposes a variable structure position controller for an induction motor(IM) which uses a reaching law and an integral compensating nonlinear switching function. With the integral compensating nonlinear switching function, both very low overshoot and high steady state control accuracy can be obtained by compensating the states chattering problem due to the unmodelled dynamics of inverter and feedback sensors. With the reaching law, reaching mode can be established quantitatively during transient state so that dynamic control performance is improved. For experiment a digital servo driver which consists of a DSP and an IPM inverter was developed. With the various experimental results, IM position control performance was verified.

STABILIZATION OF HIV / AIDS MODEL BY RECEDING HORIZON CONTROL

  • ELAIW A. M.;KISS K.;L CAETANO M. A.
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.95-112
    • /
    • 2005
  • This work concerns the stabilization of uninfected steady state of an ordinary differential equation system modeling the interaction of the HIV virus and the immune system of the human body. The control variable is the drug dose, which, in turn, affects the rate of infection of $CD4^{+}$ T cells by HIV virus. The feedback controller is constructed by a variant of the receding horizon control (RHC) method. Simulation results are discussed.

Linearizing and Control of a Three-phase Photovoltaic System with Feedback Method and Intelligent Control in State-Space

  • Louzazni, Mohamed;Aroudam, Elhassan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권6호
    • /
    • pp.297-304
    • /
    • 2014
  • Due to the nonlinearity and complexity of the three-phase photovoltaic inverter, we propose an intelligent control based on fuzzy logic and the classical proportional-integral-derivative. The feedback linearization method is applied to cancel the nonlinearities, and transform the dynamic system into a simple and linear subsystem. The system is transformed from abc frame to dq0 synchronous frame, to simplify the state feedback linearization law, and make the close-loop dynamics in the equivalent linear model. The controls improve the dynamic response, efficiency and stability of the three-phase photovoltaic grid system, under variable temperature, solar intensity, and load. The intelligent control of the nonlinear characteristic of the photovoltaic automatically varies the coefficients $K_p$, $K_i$, and $K_d$ under variable temperature and irradiation, and eliminates the oscillation. The simulation results show the advantages of the proposed intelligent control in terms of the correctness, stability, and maintenance of its response, which from many aspects is better than that of the PID controller.

Position control of D.C. motor under the disturbances by new sliding mode control

  • Lee, Ju-Jang;Kim, Jong-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.843-847
    • /
    • 1988
  • A new control method for position control of D.C. servo motor based on the variable structure control is presented. The desired trajectory satisfying the given performance requirement is used as the sliding curve. And the control input forcing the system to follow the desired model system is applied. As a result the method is robust to disturbance. The performance of the proposed controller is compared with that of the conventional state feedback controller through digital computer simulation.

  • PDF

Multirate 샘플링을 이용한 CDBC의 설계 (Design of a CDBC Using Multirate Sampling)

  • 김진용;김성열;이금원;이준모
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes a design method of a CDBC(Continuous-time Deadbeat Controller)system that takes into account the response between the sampling instant and using second-order smoothing elements. The continuous deadbeat controller is composed of a serial integral compensator and a local feedback compensator introduced into the state feedback loop. A DC servo motor is chosen for implementing CDBC algorithm. Especially according to the variable input and disturbance, corresponding CDBC design method is suggested. A Matlab Simulink is used for simulation with the Motor parameter. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF