• Title/Summary/Keyword: State transition

Search Result 1,888, Processing Time 0.038 seconds

Synthesis and Comparative Analysis of Crystallite Size and Lattice Strain of Pb2Ba1.7Sr0.3Ca2Cu3O10+δ Superconductor

  • Hasan, Maher Abd Ali;Jasim, Kareem Ali;Miran, Hussein Ali Jan
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.66-71
    • /
    • 2022
  • In this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), size-strain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.4540774, 86.658638, 87.7555823 and 85.470086 Å, respectively. Moreover, the lattice strain values obtained by W.H, SSP and H.W methods were 0.0063240, 0.006325 and 0.006, respectively. It was noted that all crystallite size results are consistent; however, the best method is the size-strain plot because it gave a value of R2 approaching one. Furthermore, degree of crystallites was calculated and found to be 59.003321%. Resistivity analysis suggests zero-resistance, which is typical of superconducting materials at critical temperature. Four-probe technique was utilized to measure the critical temperature at onset Tc(onset), zero resistivity Tc(off set), and transition (width ΔT), corresponding to temperatures of 128 K, 116 K, and 12 K, respectively.

Development of a New Prediction Alarm Algorithm Applicable to Pumped Storage Power Plant (양수발전 설비에 적용 가능한 새로운 고장 예측경보 알고리즘 개발)

  • Dae-Yeon Lee;Soo-Yong Park;Dong-Hyung Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.133-142
    • /
    • 2023
  • The large process plant is currently implementing predictive maintenance technology to transition from the traditional Time-Based Maintenance (TBM) approach to the Condition-Based Maintenance (CBM) approach in order to improve equipment maintenance and productivity. The traditional techniques for predictive maintenance involved managing upper/lower thresholds (Set-Point) of equipment signals or identifying anomalies through control charts. Recently, with the development of techniques for big analysis, machine learning-based AAKR (Auto-Associative Kernel Regression) and deep learning-based VAE (Variation Auto-Encoder) techniques are being actively applied for predictive maintenance. However, this predictive maintenance techniques is only effective during steady-state operation of plant equipment, and it is difficult to apply them during start-up and shutdown periods when rises or falls. In addition, unlike processes such as nuclear and thermal power plants, which operate for hundreds of days after a single start-up, because the pumped power plant involves repeated start-ups and shutdowns 4-5 times a day, it is needed the prediction and alarm algorithm suitable for its characteristics. In this study, we aim to propose an approach to apply the optimal predictive alarm algorithm that is suitable for the characteristics of Pumped Storage Power Plant(PSPP) facilities to the system by analyzing the predictive maintenance techniques used in existing nuclear and coal power plants.

Democratization and Politics of Trasformismo : Explaining the 1990 Three-Party Merger in South Korea

  • Kwon, Hyeokyong
    • Analyses & Alternatives
    • /
    • v.1 no.2
    • /
    • pp.2-12
    • /
    • 2017
  • Research on democratic transitions has relatively ignored the question of why some countries experience a regressive form of political pacts, while others do not. This paper develops a simple game-theoretic model to explain the phenomenon of collusive pacts in the process of democratization. Trasformismo is a term that refers to a system of political exchange based on informal clientelistic politics. The existing studies of the politics of trasformismo have emphasized the timing of industrialization and the tradition of strong state as conditions of the politics of trasformismo. However, not every late industrializers and not every strong states experienced some variants of collusive political pacts in their trajectories of democratization. In this paper, I contend that the politics of trasformismo is rather a generalizable pattern of political elites' behavior under particular circumstances. By developing a simple game theoretic model, this paper suggests the conditions under which political actors are likely to collude to a regressive form of political pacts. The model shows that the likelihood of collusion to a regressive form of political pacts is a function of a set of parameters. First, a higher level of incumbency advantage in electoral competition is likely to be associated with a higher probability of collusive political pacts. Second, a higher degree of the monopoly of political representation of political parties without a close link with a variety of societal forces is likely to induce collusive behavior among politicians. Third, the ruling party leader's expectations about the likelihood of a safe extrication are related to collusive political pacts. This paper then engages in a case study of the 1990 three-party merger in South Korea. The 1990 Korean case is interesting in that the ruling party created a new party after having merged with two opposition parties. This case can be considered a result of political maneuver in a context of democratization. The case study suggests the empirical relevance of the game-theoretic model. As the game of trasformismo and the case study of the 1990 three-party merger in South Korea have shown, the collusive political pact was neither determined by a certain stage of economic development nor by a particular cultural systems. Rather, it was a product of the art of trasformismo based on party leaders' rational calculations of the expected likelihood of taking governing power.

  • PDF

Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries (플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석)

  • Minkyung Kim;Dong-hee Lee;Changyu Yeo;Sooyeon Choi;Chiwon Choi;Hyunmin Yoon
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

Luminescence and Concentration Quenching Properties of BaZrO3:Eu3+ Red-Emitting Phosphors (BaZrO3:Eu3+ 적색 형광체의 발광과 농도 소광 특성)

  • Nguyen Thi Kim Ngan;Shinho Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.274-279
    • /
    • 2024
  • Eu3+-doped BaZrO3 (BaZrO3:Eu3+) phosphor powders were prepared using a solid-state reaction by changing the molar concentration of Eu3+ within the range of 0.5 to 30 mol%. Irrespective of the molar concentration of Eu3+ ions, the crystal structures of all the phosphors were cubic. The excitation spectra of BaZrO3:Eu3+ phosphors consisted of an intense broad band centered at 277 nm in the range of 230~320 nm. The emission spectra were composed of a dominant orange band at 595 nm arising from the 5D07F1 magnetic dipole transition of Eu3+ and two weak emission bands centered at 574 and 615 nm, respectively. As the concentration of Eu3+ increased from 0.5 to 10 mol%, the intensities of all the emission bands gradually increased, approached maxima at 10 mol% of Eu3+ ions, and then showed a decreasing tendency with further increase in the Eu3+ ions due to the concentration quenching. The critical distance between neighboring Eu3+ ions for concentration quenching was calculated to be 11.21 Å, indicating that dipole-dipole interaction was the main mechanism of concentration quenching of BaZrO3:Eu3+ phosphors. The results suggest that the orange emission intensity can be modulated by doping the appropriate concentration of Eu3+ ions.

The luminescence properties of Eu3+ or Tb 3+ doped Lu2Gd1Ga2Al3O12 phosphors for X-ray imaging

  • M.J. Oh;Sudipta Saha;H.J. Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4642-4646
    • /
    • 2023
  • The Tb3+ or Eu3+-doped Lu2Gd1Ga2Al3O12 phosphor were fabricated by funace at 1500 ℃ for 12 h using a solid state reaction. The XRD (X-ray diffraction_Panalytical X'Pert Pro) and FE-SEM (field emission scanning electron microscope) are measured to confirm the crystalline structure and surface morphology of the phosphor. The Tb3+-doped Lu2Gd1Ga2Al3O12 phosphor emits the lights in 470~650 nm wavelength range due to transitions from 5D4 to 7Fj. Therefore, it shows the green region in the CIE chromaticity diagram under both UV and X-rays excitations. The Eu3+-doped Lu2Gd1Ga2Al3O12 phosphor emits the lights in 550~750 nm wavelength range because of 5Di to 7Fj. The emission is confirmed to be in the red region using the CIE chromaticity diagram. The Tb3+ or Eu3+-doped Lu2Gd1Ga2Al3O12 phosphor shows the characteristic f-f transition with a long decay time, which is about several milliseconds. They have the high efficiency of light emission for X-ray because of their high effective Z number (Zeff = 58.5) and density. Therefore, they are very much promising phosphors for X-ray imaging application in medical fields.

Corporate Social Responsibility in Modern Transnational Corporations

  • Vitalii Nahornyi;Alona Tiurina;Olha Ruban;Tetiana Khletytska;Vitalii Litvinov
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.172-180
    • /
    • 2024
  • Since the beginning of 2015, corporate social responsibility (CSR) models have been changing in connection with the trend towards the transition of joint value creation of corporate activities and consideration of stakeholders' interests. The purpose of the academic paper lies in empirically studying the current practice of social responsibility of transnational corporations (TNCs). The research methodology has combined the method of qualitative analysis, the method of cases of agricultural holdings in emerging markets within the framework of resource theory, institutional theory and stakeholders' theory. The results show that the practice of CSR is integrated into the strategy of sustainable development of TNCs, which determine the methods, techniques and forms of communication, as well as areas of stakeholders' responsibility. The internal practice of CSR is aimed at developing norms and standards of moral behaviour with stakeholders in order to maximize economic and social goals. Economic goals are focused not only on making a profit, but also on minimizing costs due to the potential risks of corruption, fraud, conflict of interest. The system of corporate social responsibility of modern TNCs is clearly regulated by internal documents that define the list of interested parties and stakeholders, their areas of responsibility, greatly simplifying the processes of cooperation and responsibility. As a result, corporations form their own internal institutional environment. Ethical norms help to avoid the risks of opportunistic behaviour of personnel, conflicts of interest, cases of bribery, corruption, and fraud. The theoretical value of the research lies in supplementing the theory of CSR in the context of the importance of a complex, systematic approach to integrating the theory of resources, institutional theory, theory of stakeholders in the development of strategies for sustainable development of TNCs, the practice of corporate governance and social responsibility.

Preparation and Luminescence Optimization of CeO2:Er/Yb Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 CeO2:Er/Yb 형광체 제조 및 발광특성 최적화)

  • Jung, Kyeong Youl;Park, Jea Hoon;Song, Shin Ae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.319-325
    • /
    • 2015
  • Submicron-sized $CeO_2:Er^{3+}/Yb^{3+}$ upconversion phosphor particles were synthesized by spray pyrolysis, and their luminescent properties were characterized by changing the concentration of $Er^{3+}$ and $Yb^{3+}$. $CeO_2:Er^{3+}/Yb^{3+}$ showed an intense green and red emission due to the $^4S_{3/2}$ or $^2H_{11/2}{\rightarrow}^4I_{15/2}$ and $^4F_{9/2}{\rightarrow}^4I_{15/2}$ transition of $Er^{3+}$ ions, respectively. In terms of the emission intensity, the optimal concentrations of Er and Yb were 1.0 % and 2.0%, respectively, and the concentration quenching was found to occur via the dipole-dipole interaction. Upconversion mechanism was discussed by using the dependency of emission intensities on pumping powers and considering the dominant depletion processes of intermediate energy levels for the red and green emission with changing the $Er^{3+}$ concentration. An energy transfer from $Yb^{3+}$ to $Er^{3+}$ in $CeO_2$ host was mainly involved in ground-state absorption (GSA), and non-radiative relaxation from $^4I_{11/2}$ to $^4I_{13/2}$ of $Er^{3+}$ was accelerated by the $Yb^{3+}$ co-doping. As a result, the $Yb^{3+}$ co-doping led to greatly enhance the upconversion intensity with increasing ratios of the red to green emission. Finally, it is revealed that the upconversion emission is achieved by two photon processes in which the linear decay dominates the depletion of intermediate energy levels for green and red emissions for $CeO_2:Er^{3+}/Yb^{3+}$ phosphor.

Ho3+-Doped Amorphous Dielectrics:Emission and Excitation Spectra of the 1.6 μm Fluorescence (Ho3+ 첨가 비정질 유전체 : 1.6μm 헝광의 방출 및 여기 스펙트럼)

  • 최용규
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.618-622
    • /
    • 2004
  • Excitation spectra of the 1.6 rm emission originating from $Ho^{3+}$$^{5}$ I$_{5}$ \longrightarrow$^{5}$ I$_{7}$ transition in fluoride, sulfide, and selenide glasses were measured at wavelengths around 900nm where the fluorescing $^{5}$ I$_{5}$ level is located. In specific energy range where the frequency upconversion populating $^{5}$ F$_{1}$ state happens, the excitation efficiency of the 1.6 fm emission was deteriorated in fluoride and sulfide hosts. In selenide however spectral line shapes of the excitation spectrum and the '$^{5}$ I$_{8}$ \longrightarrow$^{5}$ I$_{5}$ absorption spectrum looked seemingly identical to each other. Differences in optical nonlinearity as well as electronic band gap energy of the host glasses used are responsible for the experimental observations. On the other hand, codoping of rare earths such as Tb$^{3+}$, Dy$^{3+}$, Eu$^{3+}$, and Nd$^{3+}$ was effective in decreasint the terminating $^{5}$ I$_{7}$ level lifetime. However, at the same time, some of the codopants increased unnecessary absorption at the 1.6 $\mu$m wavelengths via their ground state absorption. Though the lifetime quenching effect of Eu$^{3+}$ was moderate, it exhibited no additional extrinsic absorption at the 1.6 $\mu$m band.EX>m band.

Synthesis and Application of Bluish-Green BaSi2O2N2:Eu2+ Phosphor for White LEDs (백색 LED용 청록색 BaSi2O2N2:Eu2+ 형광체의 합성 및 응용)

  • Jee, Soon-Duk;Choi, Kang-Sik;Choi, Kyoung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.250-254
    • /
    • 2011
  • We have synthesized bluish-green, highly-efficient $BaSi_2O_2N_2:Eu^{2+}$ and $(Ba,Sr)Si_2O_2N_2:Eu^{2+}$ phosphors through a conventional solid state reaction method using metal carbonate, $Si_3N_4$, and $Eu_2O_3$ as raw materials. The X-ray diffraction (XRD) pattern of these phosphors revealed that a $BaSi_2O_2N_2$ single phase was obtained. The excitation and emission spectra showed typical broadband excitation and emission resulting from the 5d to 4f transition of $Eu^{2+}$. These phosphors absorb blue light at around 450 nm and emit bluish-green luminescence, with a peak wavelength at around 495 nm. From the results of an experiment involving Eu concentration quenching, the relative PL intensity was reduced dramatically for Eu = 0.033. A small substitution of Sr in place of Ba increased the relative emission intensity of the phosphor. We prepared several white LEDs through a combination of $BaSi_2O_2N_2:Eu^{2+}$, YAG:$Ce^{3+}$, and silicone resin with a blue InGaN-based LED. In the case of only the YAG:$Ce^{3+}$-converted LED, the color rendering index was 73.4 and the efficiency was 127 lm/W. In contrast, in the YAG:$Ce^{3+}$ and $BaSi_2O_2N_2:Eu^{2+}$-converted LED, two distinct emission bands from InGaN (450 nm) and the two phosphors (475-750 nm) are observed, and combine to give a spectrum that appears white to the naked eye. The range of the color rendering index and the efficiency were 79.7-81.2 and 117-128 lm/W, respectively. The increased values of the color rendering index indicate that the two phosphor-converted LEDs have improved bluish-green emission compared to the YAG:Ce-converted LED. As such, the $BaSi_2O_2N_2:Eu^{2+}$ phosphor is applicable to white high-rendered LEDs for solid state lighting.