• Title/Summary/Keyword: State space averaging

Search Result 60, Processing Time 0.019 seconds

The Analysis and Compensation of DC to DC Converter with Current Mode Controller (전류모드제어를 적용한 직류전원장치의 해석 및 보상에 관한 연구)

  • 김철진;김영태;송요창
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.230-237
    • /
    • 2003
  • Current mode control has been used for DC to DC converters for over twenty years. There are many different control schemes which use the inductor current signal in one way or another to control the DC to DC converter. In this paper, the state space averaging technique is applied for the analysis of flyback type current mode control circuit. We made real converter for the guarantee of stable output characteristic and proper design of feedback circuit. The validity of proposed method is verified from test result. The improvement of stability is confirmed by sinusoidal signal injection method with isolated transformer. It is known that phase margin is sufficient and gain crossover frequency fc is early 1/5 of switching frequency, fs, from the experimental result with frequency response analyzer.

Systematic Dynamic Modeling of an Integrated Single-stage Power Converter

  • Choi, Ki-Young;Lee, Kui-Jun;Kim, Yong-Wook;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2288-2296
    • /
    • 2015
  • This paper proposes a novel systematic modeling approach for an integrated single-stage power converter in order to predict its dynamic characteristics. The basic strategy of the proposed modeling is substituting the internal converters with an equivalent current source, and then deriving the dynamic equations under a standalone operation using the state-space averaging technique. The proposed approach provides an intuitive modeling solution and simplified mathematical process with accurate dynamic prediction. The simulation and experimental results by using an integrated boost-flyback converter prototype provide verification consistent with theoretical expectations.

Analysis of the Three Phase Inductor-Converter Bridge Circuit by Means of State-Space Averaging Method (상태변수평균화법에 의한 삼상ICB회로 해석)

  • Park, Min-Ho;Hong, Soon-Chan;Oh, Soo-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.394-398
    • /
    • 1988
  • In this paper, the time-averaged behavior of the three-phase Inductor-Converter Bridge (ICB) circuit has been analyzed by using the state-space averaging method. The results are in closed form far from the results obtained by using the Fourier series. Therefore, the computational difficulties of the infinite Fourier series can be avoided and the results derived in this paper are available especially in real time control. Unlike the SFC, $S^{4}LCL$, DFC and other circuits which have time varying switching intervals for a constant time-averaged value of coil voltage, the ICB circuits operate with a clock-driven sequence of gate pulses which have constant switching intervals.

  • PDF

Design of Active Disturbance Rejection Control for Inductive Power Transfer Systems

  • Wang, Yanan;Dong, Lei;Liao, Xiaozhong;Ju, Xinglong;Xiao, Furong
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1434-1447
    • /
    • 2018
  • The control design of inductive power transfer (IPT) systems has attracted a lot of attention in the field of wireless power transmission. Due to the high-order resonant networks and multiple loads in IPT systems, a simplified model of an IPT system is preferred for analysis and control design, and a controller with strong robustness is required. Hence, an active disturbance rejection control (ADRC) for IPT systems is proposed in this paper. To realize the employment of ADRC, firstly a small-signal model of an LC series-compensative IPT system is derived based on generalized state-space averaging (GSSA), then the ADRC is implemented in the designed IPT system. The ADRC not only provides superior robustness to unknown internal and external disturbances, but also requires few knowledge of the IPT system. Due to the convenient realization of ADRC, the designed IPT system retains its simple structure without any additional circuits. Finally, a frequency domain analysis and experimental results have validated the effectiveness of the employed ADRC, especially its robustness in the presence of frequency drifts and other common disturbances.

Boost Converter Modeling of Photovoltaic Conditioning System for MPPT ("PV Converter 모델링"을 적용한 MPPT제어기법)

  • Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;An, Jin-Ung;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.1-13
    • /
    • 2009
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model and compares both methods using Bode plots. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.

Design of Buck Converter Controller in a Photovoltaic Power Conditioning System (태양광 발전 시스템에서의 벅 컨버터 제어기 설계)

  • Park, Bong-Hee;Jeong, Seung-Whan;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Generally, buck converter controller is designed to control the output voltage of the converter. However, design of the controller in a photovoltaic power conditioning system is different from theoretical design guideline. The controller in a photovoltaic power conditioning system controls the input voltage of the converter (the output voltage of the solar cell) to meet a maximum power point tracking (MPPT) performance. In this study, a new model for buck converter used in a photovoltaic power conditioning system is proposed, which is linearized after state-space averaging in each period. Also, mathematical expression of the modeled buck converter is interpreted separately as small and large signals; therefore its appropriateness is measured to design linear voltage and current controller.

The Study of Stand-alone Photovoltaic Power Conditioning System (독립형 태양광 전력변환장치 연구)

  • Yang, Seung-Dae;Jung, Seung-Hwan;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.249-255
    • /
    • 2011
  • This paper is about the study of a stand-alone photovoltaic power conditioning system with an energy storage system with battery. The paper proposes the appropriate circuit model of stand-alone PV PCS considering the maintenance of the battery system. It also proposes the buck converter modeling by a state-space averaging method considering characteristics of solar cell. Lastly, it shows the way to choose the suitable battery and to design the model of bi-directional converter for charging and discharging battery. PSIM simulation is used to validate the proposed algothim of the system.

  • PDF

Design of Buck Converter Controller in the Photovoltaic Power Conditioning System (태양광 발전시스템에서의 벅 컨버터 제어기 설계)

  • Jung, Seung-Hwan;Choy, Ick;Im, Ji-Hoon;Choi, Ju-Yeop;An, Jin-Ung;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.377-382
    • /
    • 2009
  • modelling of the buck converter in photovoltaic power conditioning system is not a possibility of doing with input-output relationship from existing procedures. Because the input current and voltage of the buck converter in fluctuate at any time. The controller which design with the method which has like this error cannot have a good efficiency. In this paper, firstly, in order to design accurate controller of buck converter, new model is proposed. The modeling used a state-space averaging method and came to accomplish. Secondly, the process which design the controller is described. Finally, the simulation results are analyzed.

  • PDF

Modelling and Stability Analysis of AC-DC Power Systems Feeding a Speed Controlled DC Motor

  • Pakdeeto, Jakkrit;Areerak, Kongpan;Areerak, Kongpol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1566-1577
    • /
    • 2018
  • This paper presents a stability analysis of AC-DC power system feeding a speed controlled DC motor in which this load behaves as a constant power load (CPL). A CPL can significantly degrade power system stability margin. Hence, the stability analysis is very important. The DQ and generalized state-space averaging methods are used to derive the mathematical model suitable for stability issues. The paper analyzes the stability of power systems for both speed control natural frequency and DC-link parameter variations and takes into account controlled speed motor dynamics. However, accurate DC-link filter and DC motor parameters are very important for the stability study of practical systems. According to the measurement errors and a large variation in a DC-link capacitor value, the system identification is needed to provide the accurate parameters. Therefore, the paper also presents the identification of system parameters using the adaptive Tabu search technique. The stability margins can be then predicted via the eigenvalue theorem with the resulting dynamic model. The intensive time-domain simulations and experimental results are used to support the theoretical results.

Analysis of the Secondary Battery Charge/Discharge System Using State Space Averaging Method (상태공간평균화법에 의한 2차전지 충방전 시스템의 해석)

  • Won, Hwa-Young;Chae, Soo-Yong;Lee, Hyoung-Ju;Kim, Hee-Sun;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.13-15
    • /
    • 2008
  • Charging or discharging secondary batteries such as a lithium-ion battery is essential in the stage of production and takes long time over two hours. And the charge/discharge system is operated with high switching frequency over several tens kHz. Therefore, to simulate such a system in the conventional way takes very long time and huge files are produced. Finally, the simulation would be unable with general PC class. In this paper, the lithium-ion battery charge/discharge system is analyzed by using state space averaging method. As a result, the simulation time is reduced dramatically and the charge/- discharge characteristics of the lithium-ion battery can be observed.

  • PDF