As the elderly population is becoming an aging society, the elderly are experiencing many problems. Social security costs for the elderly are increasing and the un-linked social phenomenon is emerging. Thus, the social infrastructure and welfare system established in the past economic growth period are in danger of not functioning properly. People socially isolated or with chronic diseases among the elderly are exposed to various accidents. Thus, an active healthcare management service is imperative. Additionally, in the event of a dangerous situation, the system must have ways to notify guardians (family or medical personnel) regarding appropriate action. Thus, in this paper, we propose the smartphone-based healthcare and emergency response service platform. The proposed service platform aggregates movement of relevant data in real-time using a smartphone. Based on aggregated data, it will always recognize the user's movements and current state using the human motion recognition mechanism. Thus, the proposed service platform provides real-time status monitoring, activity reports, a health calendar, location-based hospital information, emergency situation detection, and cloud messaging server-based efficient notification to several subscribers such as family, guardians, and medical personnel. Through this service, users or guardians can augment the level of care for the elderly through the reports. Also, if an emergency situation is detected, the system immediately informs guardians so as to minimize the risk through immediate response.
Ding, Yi;Cao, Yaqin;Duffy, Vincent G.;Zhang, Xuefeng
Safety and Health at Work
/
v.11
no.2
/
pp.207-214
/
2020
Background: Prolonged sitting at work can lead to adverse health outcomes. The health risk of office workers is an increasing concern for the society and industry, with prolonged sitting work becoming more prevalent. Objective: This study aimed to explore the variation in muscle activities during prolonged sitting work and found out when and how to take a break to mitigate the risk of muscle symptoms. Methods: A preliminary survey was conducted to find out the prevalence of muscle discomfort in sedentary work. Firstly, a 2-h sedentary computer work was designed based on the preliminary study to investigate the variation in muscle activities. Twenty-four participants took part in the electromyography (EMG) measurement study. The EMG variations in the trapezius muscle and latissimus dorsi were investigated. Then the intervention time was determined based on the EMG measurement study. Secondly, 48 participants were divided into six groups to compare the effectiveness of every break type (passive break, active break of changing their posture, and stand and stretch their body with 5 or 10 mins). Finally, data consisting of EMG amplitudes and spectra and subjective assessment of discomfort were analyzed. Results: In the EMG experiment, results from the joint analysis of the spectral and amplitude method showed muscle fatigue after about 40 mins of sedentary work. In the intervention experiment, the results showed that standing and stretching for 5 mins was the most effective break type, and this type of break could keep the muscles' state at a recovery level for about 30-45 mins. Conclusions: This study offers the possibility of being applied to office workers and provides preliminary data support and theoretical exploration for a follow-up early muscle fatigue detection system.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.10
no.1
/
pp.208-222
/
2000
This study was conducted to supplement limit of previous study, The objectives of this study were to select optimal conditions of high performance liquid chromatography(HPLC) operation for detecting urinary 2-thiothiazolicline-4-carboxylic acid(TTCA) and thiocarbamide simultaneously, and to evaluate recovery rates for various liquid-liquid extration method of these metabolites, The results are as follows : 1. The urinary TTCA and thiocarbamide were separate sharply when flow rate is $0.7m{\ell}/min$, using a series $C_8$ and $C_{18}$ column, 50 mM $KH_2PO_4$ : acetonitrile (93.5 : 6.5) and pH 3.5 as a mobile phase. The retention time was TTCA, $12.07{\pm}0.11$(mean${\pm}$SD, n=06), thiocarbamide, $7.85{\pm}0.01$ (mean${\pm}$SD, n=6), respectively. The calibration curve for TTCA and thiocarbamide was linear within the range 0.05 to $30{\mu}g/m{\ell}$. 2. By the liquid-liquid extration, butanol extration with $(NH_4)_2$ as a salting-out reagent was used as a simultaneous extration method for these metabolites in acid state, and recovery rates of this method are urinary TTCA, $49.6{\pm}17.7$ (mean${\pm}$SD, n=16), thiocarbamide, $43,9{\pm}5.50$ (mean${\pm}$SD, n=16), respectively 3. The precision(pooled coefficients of variation for 4 concentration) of the urinary thiocarbamide analysis was 0.03754 by butanol liquid-liquid extraction with $(NH_4)_2$ as a salting-out reagent, and TTCA was 0.04082 by ethyl acetate liquid-liquid extration with $(NH_4)_2$ as a salting out reagent The above results show that the butanol liquid-liquid extraction with $(NH_4)_2$ as a salting-out reagent in acid state, and using a series $C_8$ and $C_{18}$ column, 50 mM $KH_2PO_4$ : acetonitrile (93.5 : 6.5) and pH 3.5 as a mobile phase are suitable for the analysis of urinary TTCA and thiocarbamide simultaneously. The detection limit of TTCA and thiocarbamide was about $0.17{\mu}g/m{\ell}$, $0.07{\mu}g/m{\ell}$.
The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.
Ultra-high-performance concrete (UHPC) has received remarkable attentions in civil infrastructure due to its unique mechanical characteristics and durability. UHPC gains increasingly dominant in essential structural elements, while its unique properties pose challenges for traditional inspection methods, as damage may not always manifest visibly on the surface. As such, the need for robust inspection techniques for detecting cracks in UHPC members has become imperative as traditional methods often fall short in providing comprehensive and timely evaluations. In the era of artificial intelligence, computer vision has gained considerable interest as a powerful tool to enhance infrastructure condition assessment with image and video data collected from sensors, cameras, and unmanned aerial vehicles. This paper presents a computer vision-based approach employing deep learning to detect cracks in UHPC beams, with the aim of addressing the inherent limitations of traditional inspection methods. This work leverages computer vision to discern intricate patterns and anomalies. Particularly, a convolutional neural network architecture employing transfer learning is adopted to identify the presence of cracks in the beams. The proposed approach is evaluated with image data collected from full-scale experiments conducted on UHPC beams subjected to flexural and shear loadings. The results of this study indicate the applicability of computer vision and deep learning as intelligent methods to detect major and minor cracks and recognize various damage mechanisms in UHPC members with better efficiency compared to conventional monitoring methods. Findings from this work pave the way for the development of autonomous infrastructure health monitoring and condition assessment, ensuring early detection in response to evolving structural challenges. By leveraging computer vision, this paper contributes to usher in a new era of effectiveness in autonomous crack detection, enhancing the resilience and sustainability of UHPC civil infrastructure.
Sung, Ji Hoon;Choi, Sun Tak;Lee, Joo Young;Cho, We-Duke
KIPS Transactions on Computer and Communication Systems
/
v.8
no.4
/
pp.93-102
/
2019
As interest in wellness grows, There is a lot of research about monitoring individual health using wearable devices. Accordingly, a variety of methods have been studied to distinguish exercise from daily activities using wearable devices. Most of these existing studies are machine learning methods. However, there are problems with over-fitting on individual person's learning, data discontinuously recognition by independent segmenting and fake activity. This paper suggests a detection method for exercise activity based on the physiological response principle of heart rate up and down during exercise. This proposed method calculates activity intensity and heart rate from triaxial and photoplethysmography sensor to determine a heart rate recovery, then detects exercise by estimating activity intensity or detecting a heart rate rising state. Experimental results show that our proposed algorithm has 98.64% of averaged accuracy, 98.05% of averaged precision and 98.62% of averaged recall.
Annually, millions of children die from respiratory virus infections. Human rhinovirus (HRV) is a causative agent of severe respiratory infections in young, elderly, and asthmatic patients with weak immunity. In this study, 9,010 respiratory virus specimens were collected from January 2012 to December 2018 at Dankook University Hospital, Cheonan and examined by real-time reverse transcription polymerase chain reaction. Twelve respiratory viruses were detected. The mean detection rate was 21.3% (N=1,920/9,010), and the mean age of HRV-positive patients was 6.5 years (median age: 1.6 years, range: 0.0~96.0). The detection rate was the highest in July (32.4%) and the lowest in February (8.3%). When the detection rate was analyzed by age group, the detection rate was the second highest in patients aged 10~19 years. The co-infection rate of HRV was 35.3%, and the most common combination was with Adenovirus. Respiratory virus infections are known to occur in children and elderly people with weak immunity. However, in this study, the detection rate was second highest in patients aged 10~19 years. Indeed, the detection rate in this age group was more than 15%, except in January and February. These results suggested that steady-state studies on the infection patterns of HRV are required.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.7
/
pp.2304-2320
/
2021
Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.
Head and neck cancers are amongst the commonest malignancies, accounting for approximately 20% of the cancer burden in India. The major risk factors are tobacco chewing, smoking and alcohol consumption, which are all preventable. This retrospective study presents data from the histopathology register for a five year period from 2002-2006 at Patna Medical College and Hospital, a tertiary care hospital drawing patients from the entire Bihar state, the 3rd most populous state of India with the majority of the population residing in rural areas. Incidence rates based on sex, age, site of lesion, including age standardized incidence rates for males and females, with mean age of presentation, distribution of histological variants and year wise trend were calculated. Out of 455 head and neck neoplasias, 241 were benign while 214 were malignant. The most common age group for all malignant biopsies was 7th decade for males and the 5th decade for females. Malignant cases were commoner in males than females with the male:female ratio of 3.1:1, which was found to be statistically significant by the chi-square (${\chi}^2$) test. The crude rate and age standardized incidence rate was 0.05 and 0.06 per 100,000 population respectively. Squamous cell carcinoma (SCC) contributed about 96% of all cases, with grade I being the most common. Larynx was the most common site for malignancy, the supraglottic region being its most commonly affected sub-site. This observed incidence patterns in the region are a reminder of widespread unawareness, low healthcare utilization with virtually non-existent cancer programs. It also underlines the need to advocate for reliable cost-effective programs to create awareness, for early detection and plan appropriate management strategies. There is a compelling demand for a cancer registry in this region as well as proper implementation of preventive measures to combat this growing threat of cancer, many of whose risk factors are preventable.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.12
/
pp.265-271
/
2018
This paper presents a method for detecting damage to a structure at low cost using its impedance. The impedance technique is a typical method to detect local damage for structural health monitoring. This is a common technique for estimating damage by monitoring the electro-mechanical admittance signal of the structure. To apply this technique, an expensive impedance analyzer is generally used. On the other hand, it is necessary to develop a low-cost variant to effectively disseminate the technique. In this study, a method based on the transfer impedance using a function generator and digital multimeter, which are generally used in the laboratory instead of an impedance analyzer, was developed. That is, this technique estimates the damage by comparing the damage index using the amplitude ratio of the output voltage measured in the healthy and damaged state. A transfer impedance test was carried out on a steel specimen. By comparing the damage index, the presence of damage could be assessed reasonably. This study is a basic investigation of an impedance-based low-cost damage detection method that can be used effectively for structural health monitoring if supplemented with future research to estimate the damage location and severity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.