• 제목/요약/키워드: State of health detection

검색결과 147건 처리시간 0.025초

Advanced Features of Static Inverter and Their Influence on Rail Infrastructure and Vehicle Maintenance

  • Bachmann, G.;Wimmer, D.
    • International Journal of Railway
    • /
    • 제1권3호
    • /
    • pp.94-98
    • /
    • 2008
  • Static inverters are essential devices onboard of rolling stock. State-of-the-art static inverters have an impact on both rail infrastructure and vehicle maintenance due to their new topology with new features. The paper describes two important aspects as examples of new features available in state-of-the-art static inverters: active input current control and the effects on the rail infrastructure as well as the detection of the state of charge and the state of health of batteries to simplify vehicle maintenance.

  • PDF

A Novel Battery State of Health Estimation Method Based on Outlier Detection Algorithm

  • Piao, Chang-hao;Hu, Zi-hao;Su, Ling;Zhao, Jian-fei
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1802-1811
    • /
    • 2016
  • A novel battery SOH estimation algorithm based on outlier detection has been presented. The Battery state of health (SOH) is one of the most important parameters that describes the usability state of the power battery system. Firstly, a battery system model with lifetime fading characteristic was established, and the battery characteristic parameters were acquired from the lifetime fading process. Then, the outlier detection method based on angular distribution was used to identify the outliers among the battery behaviors. Lastly, the functional relationship between battery SOH and the outlier distribution was obtained by polynomial fitting method. The experimental results show that the algorithm can identify the outliers accurately, and the absolute error between the SOH estimation value and true value is less than 3%.

Costing of a State-Wide Population Based Cancer Awareness and Early Detection Campaign in a 2.67 Million Population of Punjab State in Northern India

  • Thakur, JS;Prinja, Shankar;Jeet, Gursimer;Bhatnagar, Nidhi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.791-797
    • /
    • 2016
  • Background: Punjab state is particularly reporting a rising burden of cancer. A 'door to door cancer awareness and early detection campaign' was therefore launched in the Punjab covering about 2.67 million population, wherein after initial training accredited social health activists (ASHAs) and other health staff conducted a survey for early detection of cancer cases based on a twelve point clinical algorithm. Objective: To ascertain unit cost for undertaking a population-based cancer awareness and early detection campaign. Materials and Methods: Data were collected using bottom-up costing methods. Full economic costs of implementing the campaign from the health system perspective were calculated. Options to meet the likely demand for project activities were further evaluated to examine their worth from the point of view of long-term sustainability. Results: The campaign covered 97% of the state population. A total of 24,659 cases were suspected to have cancer and were referred to health facilities. At the state level, incidence and prevalence of cancer were found to be 90 and 216 per 100,000, respectively. Full economic cost of implementing the campaign in pilot district was USD 117,524. However, the financial cost was approximately USD 6,301. Start-up phase of campaign was more resource intensive (63% of total) than the implementation phase. The economic cost per person contacted and suspected by clinical algorithm was found to be USD 0.20 and USD 40 respectively. Cost per confirmed case under the campaign was 7,043 USD. Conclusions: The campaign was able to screen a reasonably large population. High to high economic cost points towards the fact that the opportunity cost of campaign put a significant burden on health system and other programs. However, generating awareness and early detection strategy adopted in this campaign seems promising in light of fact that organized screening is not in place in India and in many developing countries.

Health monitoring of multistoreyed shear building using parametric state space modeling

  • Medhi, Manab;Dutta, Anjan;Deb, S.K.
    • Smart Structures and Systems
    • /
    • 제4권1호
    • /
    • pp.47-66
    • /
    • 2008
  • The present work utilizes system identification technique for health monitoring of shear building, wherein Parametric State Space modeling has been adopted. The method requires input excitation to the structure and also output acceleration responses of both undamaged and damaged structure obtained from numerically simulated model. Modal parameters like eigen frequencies and eigen vectors have been extracted from the State Space model after introducing appropriate transformation. Least square technique has been utilized for the evaluation of the stiffness matrix after having obtained the modal matrix for the entire structure. Highly accurate values of stiffness of the structure could be evaluated corresponding to both the undamaged as well as damaged state of a structure, while considering noise in the simulated output response analogous to real time scenario. The damaged floor could also be located very conveniently and accurately by this adopted strategy. This method of damage detection can be applied in case of output acceleration responses recorded by sensors from the actual structure. Further, in case of even limited availability of sensors along the height of a multi-storeyed building, the methodology could yield very accurate information related to structural stiffness.

A label-free high precision automated crack detection method based on unsupervised generative attentional networks and swin-crackformer

  • Shiqiao Meng;Lezhi Gu;Ying Zhou;Abouzar Jafari
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.449-463
    • /
    • 2024
  • Automated crack detection is crucial for structural health monitoring and post-earthquake rapid damage detection. However, realizing high precision automatic crack detection in the absence of corresponding manual labeling presents a formidable challenge. This paper presents a novel crack segmentation transfer learning method and a novel crack segmentation model called Swin-CrackFormer. The proposed method facilitates efficient crack image style transfer through a meticulously designed data preprocessing technique, followed by the utilization of a GAN model for image style transfer. Moreover, the proposed Swin-CrackFormer combines the advantages of Transformer and convolution operations to achieve effective local and global feature extraction. To verify the effectiveness of the proposed method, this study validates the proposed method on three unlabeled crack datasets and evaluates the Swin-CrackFormer model on the METU dataset. Experimental results demonstrate that the crack transfer learning method significantly improves the crack segmentation performance on unlabeled crack datasets. Moreover, the Swin-CrackFormer model achieved the best detection result on the METU dataset, surpassing existing crack segmentation models.

Low Attenuation Waveguide for Structural Health Monitoring with Leaky Surface Waves

  • Bezdek, M.;Joseph, K.;Tittmann, B.R.
    • 비파괴검사학회지
    • /
    • 제32권3호
    • /
    • pp.241-262
    • /
    • 2012
  • Some applications require structural health monitoring in inaccessible components. This paper presents a technique useful for Structural Health Monitoring of double wall structures, such as double wall steam pipes and double wall pressure vessels separated from an ultrasonic transducer by three layers. Detection has been demonstrated at distances in excess of one meter for a fixed transducer. The case presented here is for one of the layers, the middle layer, being a fluid. For certain transducer configurations the wave propagating in the fluid is a wave with low velocity and attenuation. The paper presents a model based on wave theory and finite element simulation; the experimental set-up and observations, and comparison between theory and experiment. The results provide a description of the technique, understanding of the phenomenon and its possible applications in Structural Health Monitoring.

Damage detection technique in existing structures using vibration-based model updating

  • Devesh K. Jaiswal;Goutam Mondal;Suresh R. Dash;Mayank Mishra
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.63-86
    • /
    • 2023
  • Structural health monitoring and damage detection are essential for assessing, maintaining, and rehabilitating structures. Most of the existing damage detection approaches compare the current state structural response with the undamaged vibrational structural response, which is unsuitable for old and existing structures where undamaged vibrational responses are absent. One of the approaches for existing structures, numerical model updating/inverse modelling, available in the literature, is limited to numerical studies with high-end software. In this study, an attempt is made to study the effectiveness of the model updating technique, simplify modelling complexity, and economize its usability. The optimization-based detection problem is addressed by using programmable open-sourced code, OpenSees® and a derivative-free optimization code, NOMAD®. Modal analysis is used for damage identification of beam-like structures with several damage scenarios. The performance of the proposed methodology is validated both numerically and experimentally. The proposed method performs satisfactorily in identifying both locations and intensity of damage in structures.

Significance of Viable but Nonculturable Escherichia coli: Induction, Detection, and Control

  • Ding, Tian;Suo, Yuanjie;Xiang, Qisen;Zhao, Xihong;Chen, Shiguo;Ye, Xingqian;Liu, Donghong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.417-428
    • /
    • 2017
  • Diseases caused by foodborne or waterborne pathogens are emerging. Many pathogens can enter into the viable but nonculturable (VBNC) state, which is a survival strategy when exposed to harsh environmental stresses. Pathogens in the VBNC state have the ability to evade conventional microbiological detection methods, posing a significant and potential health risk. Therefore, controlling VBNC bacteria in food processing and the environment is of great importance. As the typical one of the gram-negatives, Escherichia coli (E. coli) is a widespread foodborne and waterborne pathogenic bacterium and is able to enter into a VBNC state in extreme conditions (similar to the other gram-negative bacteria), including inducing factors and resuscitation stimulus. VBNC E. coli has the ability to recover both culturability and pathogenicity, which may bring potential health risk. This review describes the concrete factors (nonthermal treatment, chemical agents, and environmental factors) that induce E. coli into the VBNC state, the condition or stimulus required for resuscitation of VBNC E. coli, and the methods for detecting VBNC E. coli. Furthermore, the mechanism of genes and proteins involved in the VBNC E. coli is also discussed in this review.

Autonomous hardware development for impedance-based structural health monitoring

  • Grisso, Benjamin L.;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.305-318
    • /
    • 2008
  • The development of a digital signal processor based prototype is described in relation to continuing efforts for realizing a fully self-contained active sensor system utilizing impedance-based structural health monitoring. The impedance method utilizes a piezoelectric material bonded to the structure under observation to act as both an actuator and sensor. By monitoring the electrical impedance of the piezoelectric material, insights into the health of the structured can be inferred. The active sensing system detailed in this paper interrogates a structure utilizing a self-sensing actuator and a low cost impedance method. Here, all the data processing, storage, and analysis is performed at the sensor location. A wireless transmitter is used to communicate the current status of the structure. With this new low cost, field deployable impedance analyzer, reliance on traditional expensive, bulky, and power consuming impedance analyzers is no longer necessary. A complete power analysis of the prototype is performed to determine the validity of power harvesting being utilized for self-containment of the hardware. Experimental validation of the prototype on a representative structure is also performed and compared to traditional methods of damage detection.

A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies

  • Lei, Ying;Chen, Feng;Zhou, Huan
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.57-80
    • /
    • 2015
  • Extended Kalman Filter (EKF) has been widely used for structural identification and damage detection. However, conventional EKF approaches require that external excitations are measured. Also, in the conventional EKF, unknown structural parameters are included as an augmented vector in forming the extended state vector. Hence the sizes of extended state vector and state equation are quite large, which suffers from not only large computational effort but also convergence problem for the identification of a large number of unknown parameters. Moreover, such approaches are not suitable for intelligent structural damage detection due to the limited computational power and storage capacities of smart sensors. In this paper, a two-stage and two-step algorithm is proposed for the identification of structural damage as well as unknown external excitations. In stage-one, structural state vector and unknown structural parameters are recursively estimated in a two-step Kalman estimator approach. Then, the unknown external excitations are estimated sequentially by least-squares estimation in stage-two. Therefore, the number of unknown variables to be estimated in each step is reduced and the identification of structural system and unknown excitation are conducted sequentially, which simplify the identification problem and reduces computational efforts significantly. Both numerical simulation examples and lab experimental tests are used to validate the proposed algorithm for the identification of structural damage as well as unknown excitations for structural health monitoring.