Currently, batteries use commonly as energy sources for mobile electric devices. Due to the high density of energy, the energy storage state of a battery is very important information. To know the battery's energy storage state, it is necessary to find out the open state voltage of the battery. The open state voltage calculates with a mathematical model, but the computation of the real time state is complicated and requires many calculations. Therefore, the state observer designs to estimate in real time the battery open-circuit voltage as disturbance including model error. Using the estimated open voltage and applying it to the state estimation algorithm, we can estimate the charge. In this study, we first estimate the open-circuit voltage and design an estimation algorithm for estimating the state of battery charge. This includes errors in the system model and has a robust characteristic to noise. It is possible to increase the precision of the charge state estimation.
A reduced particle-unscented Kalman filter estimation method, along with a splice-equivalent circuit model, is proposed for the state-of-charge estimation of an aeronautical lithium-ion battery pack. The linearization treatment is not required in this method and only a few sigma data points are used, which reduce the computational requirement of state-of-charge estimation. This method also improves the estimation covariance properties by introducing the equilibrium parameter state of balance for the aeronautical lithium-ion battery pack. In addition, the estimation performance is validated by the experimental results. The proposed state-of-charge estimation method exhibits a root-mean-square error value of 1.42% and a mean error value of 4.96%. This method is insensitive to the parameter variation of the splice-equivalent circuit model, and thus, it plays an important role in the popularization and application of the aeronautical lithium-ion battery pack.
Conventional battery state-of-charge (SoC) estimation methods either involve sophisticated models or consume considerable computational resource. This study constructs an enhanced coulomb counting method (Ah method) for the SoC estimation of lithium-ion batteries (LiBs) by expanding the Peukert equation for the discharging process and incorporating the Coulombic efficiency for the charging process. Both the rate- and temperature-dependence of battery capacity are encompassed. An SoC mapping approach is also devised for initial SoC determination and Ah method correction. The charge counting performance at different sampling frequencies is analyzed experimentally and theoretically. To achieve a favorable compromise between sampling frequency and accumulation accuracy, a frequency-adjustable current sampling solution is developed. Experiments under the augmented urban dynamometer driving schedule cycles at different temperatures are conducted on two LiBs of different chemistries. Results verify the effectiveness and generalization ability of the proposed SoC estimation method.
In general, secondary batteries are widely used as an electric energy source. Among them, the state of energy storage of mobile devices is very important information. As a method of estimating a state, there is a method of estimating the state by integrating the current according to an energy storage state of a battery, and a method of designing a state estimator by measuring a voltage and estimating a charge amount based on a battery model. In this study, we designed the state estimator using an extended Kalman filter to increase the precision of the state estimation of the charge amount by including the error of the system model and having the robustness to the noise.
Zhang, Xiaoqiang;Zhang, Weiping;Li, Hongyu;Zhang, Mao
Transactions on Electrical and Electronic Materials
/
v.18
no.3
/
pp.136-140
/
2017
The state of charge (SOC) is an important parameter in a battery-management system (BMS), and is very significant for accurately estimating the SOC of a battery. Li-ion batteries boast of excellent performance, and can only remain at their best working state by means of accurate SOC estimation that gives full play to their performances and raises their economic benefits. This paper summarizes some measures taken in SOC estimation, including the discharge experiment method, the ampere-hour integral method, the open circuit voltage method, the Kalman filter method, the neural network method, and electrochemical impedance spectroscopy (EIS. The principles of the various SOC estimation methods are introduced, and their advantages and disadvantages, as well as the working conditions adopted during these methods, are discussed and analyzed.
The Transactions of the Korean Institute of Power Electronics
/
v.19
no.2
/
pp.139-148
/
2014
State-of-charge (SOC) is one of the significant indicators to estimate the driving range of the electric vehicle and to control the alternator of the conventional engine vehicles as well. Therefore its precise estimation is crucial not only for utilizing the energy effectively but also preventing critical situations happening to the power train and lengthening the lifetime of the battery. However, lead-acid battery is time-variant, highly nonlinear, and the hysteresis phenomenon causes large errors in estimation SOC of the battery especially under the frequent discharge/charge. This paper proposes a novel estimation technique for the SOC of the Lead-Acid battery by using a well-known Extended Kalman Filter (EKF) and an electrical equivalent circuit model of the Lead-Acid battery considering diffusion and hysteresis characteristics. The diffusion is considered by the reconstruction of the open circuit voltage decay depending on the rest time and the hysteresis effect is modeled by calculating the normalized integration of the charge throughput during the partial cycle. The validity of the proposed algorithm is verified through the experiments.
Journal of The Institute of Information and Telecommunication Facilities Engineering
/
v.10
no.1
/
pp.27-32
/
2011
These days more electric devices are implemented in car, and more accurate estimation of SoC is required. OCV with current integration and Internal Resistance is essential method of Battery SoC Estimation. In this paper we propose OCV with current integration method and compare with Internal Resistance method. In OCV with current integration method estimation error was less than average 2%, but requires more than 5 minutes to stabilize OCV. If Stop and Running conditions are change frequently, estimation error will increase. In Internal resistance Modeling method, in high SoC state, estimation error was more than 15%, and in low SoC state, estimation error was less than 8%.
Lithium-ion batteries are widely used in hybrid and pure electric vehicles. State-of-charge (SOC) estimation is a fundamental issue in vehicle power train control and battery management systems. This study proposes a novel model-based SOC estimation method that applies closed-loop state observer theory and a comprehensive battery model. The state-space model of lithium-ion battery is developed based on a three-order resistor-capacitor equivalent circuit model. The least square algorithm is used to identify model parameters. A multi-state closed-loop state observer is designed to predict the open-circuit voltage (OCV) of a battery based on the battery state-space model. Battery SOC can then be estimated based on the corresponding relationship between battery OCV and SOC. Finally, practical driving tests that use two types of typical driving cycle are performed to verify the proposed SOC estimation method. Test results prove that the proposed estimation method is reasonably accurate and exhibits accuracy in estimating SOC within 2% under different driving cycles.
Proper operation of the battery powered systems depends on the accuracy of the battery SOC(State of Charge) estimation, therefore it is critical for those systems that SOC is accurately determined. The SOC of the battery is related to the battery aging and the SOC estimation methods without considering the aging of the battery are not accurate. In this paper, a new method that accurately estimate the SOC of the battery is proposed considering the aging of the battery. A mathematical model for the Battery SOC-OCV(Open Circuit Voltage) relationship is presented using Boltzmann equation and aging indicator is defined, and then the SOC is estimated combining the mathematical model and aging indicator. The proposed method takes the aging of the battery into consideration, which leads to an accurate estimation of the SOC. The simulations and experiments show the effectiveness of the proposed method for improving the accuracy of the SOC estimation.
Kim, Jonghoon;Nikitenkov, Dmitry;Denisova, Valeria
Proceedings of the KIPE Conference
/
2013.11a
/
pp.200-201
/
2013
This paper investigates a new approach for Li-Ion battery state-of-charge (SOC) estimation using sliding mode observer (SMO) technique including parameters aging compensation via recursive least squares (RLS). The main advantages of this approach would be low computational load, easiness of implementation along with the robustness of the method for internal battery model parameters estimation. The proposed algorithm was first tested on a set of acquired battery data using implementation in Simulink and later developed as C-code module for firmware application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.