Purpose of the research: This study aims to explain the state of marketing using fun among recent popular marketing strategies. Although companies are using various differentiated marketing strategies to gain a competitive edge, among them, fun marketing has constituted the most effective area of interest recently. Research design and methodology: To extract the customer selection attributes of fun marketing, after reviewing the literature, six optional attributes were selected from the factors of fun marketing towards consumers such as funny design, language play, celebrity use, funny taste, how to eat, and newtro (new + retro). Out of 300 questionnaires, 276 were used for analysis, excluding unscrupulous or incomplete questionnaires. The results were reviewed for validity and reliability using SPSS andAMOS, and the hypothesis was verified using structural equation modelling (SEM). Principal results: The results showed that funny design, language play, and newtro statistically significantly affected customer satisfaction, but celebrity use, funny taste, and eating methods had no significant effect. It was also confirmed that satisfaction had a statistically significant effect on repurchase intention. Major conclusions: This study can serve as basic data to enhance the marketing strategy of the food service industry, and it provides theoretical and practical implications.
Recently, large-scale language models (LPLM) have been shown state-of-the-art performances in various tasks of natural language processing including intent classification. However, fine-tuning LPLM requires much computational cost for training and inference which is not appropriate for dialog system. In this paper, we propose compressed intent classification model for multi-agent in low-resource like CPU. Our method consists of two stages. First, we trained sentence encoder from LPLM then compressed it through knowledge distillation. Second, we trained agent-specific adapter for intent classification. The results of three intent classification datasets show that our method achieved 98% of the accuracy of LPLM with only 21% size of it.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.11
/
pp.4184-4202
/
2021
Text steganography combined with natural language generation has become increasingly popular. The existing methods usually embed secret information in the generated word by controlling the sampling in the process of text generation. A candidate pool will be constructed by greedy strategy, and only the words with high probability will be encoded, which damages the statistical law of the texts and seriously affects the security of steganography. In order to reduce the influence of the candidate pool on the statistical imperceptibility of steganography, we propose a steganography method based on a new sampling strategy. Instead of just consisting of words with high probability, we select words with relatively small difference from the actual sample of the language model to build a candidate pool, thus keeping consistency with the probability distribution of the language model. What's more, we encode the candidate words according to their probability similarity with the target word, which can further maintain the probability distribution. Experimental results show that the proposed method can outperform the state-of-the-art steganographic methods in terms of security performance.
International Journal of Computer Science & Network Security
/
v.21
no.11
/
pp.73-80
/
2021
Nowadays microblogs have become the most popular platforms to obtain and spread information. Twitter is one of the most used platforms to share everyday life event. However, rumors and misinformation on Arabic social media platforms has become pervasive which can create inestimable harm to society. Therefore, it is imperative to tackle and study this issue to distinguish the verified information from the unverified ones. There is an increasing interest in rumor detection on microblogs recently, however, it is mostly applied on English language while the work on Arabic language is still ongoing research topic and need more efforts. In this paper, we propose a combined Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to detect rumors on Twitter dataset. Various experiments were conducted to choose the best hyper-parameters tuning to achieve the best results. Moreover, different neural network models are used to evaluate performance and compare results. Experiments show that the CNN-LSTM model achieved the best accuracy 0.95 and an F1-score of 0.94 which outperform the state-of-the-art methods.
International Journal of Computer Science & Network Security
/
v.23
no.6
/
pp.162-168
/
2023
This article presents an examination of the major cognitive-semantic theories in linguistics (Langacker, Lakoff, Fillmore, Croft). The CST's foundations are discussed concerning the educational policy changes, which are necessary to improve the linguistic disciplines in the changing context of higher education, as well as the empowerment and development of the industry. It is relevant in the light of the linguistic specialists' quality training and the development of effective methods of language learning. Consideration of the theories content, tools, and methods of language teaching, which are an important component of quality teaching and the formation of a set of knowledge and skills of students of linguistic specialties, remains crucial. This study aims to establish the main theoretical positions and directions of cognitive-semantic theory in linguistics, determine the usefulness of teaching the basics of cognitive linguistics, the feasibility of using methods of cognitive-semantic nature in the learning process. During the research, the methods of linguistic description and observation, analysis, and synthesis were applied. The result of the study is to establish the need to study basic linguistic theories, as well as general theoretical precepts of cognitive linguistics, which remains one of the effective directions in the postmodern mainstream. It also clarifies the place of the main cognitive-semantic theories in the teaching linguistics' practice of the XXI century.
International conference on construction engineering and project management
/
2022.06a
/
pp.744-751
/
2022
Construction is among the most dangerous industries with numerous accidents occurring at job sites. Following an accident, an investigation report is issued, containing all of the specifics. Analyzing the text information in construction accident reports can help enhance our understanding of historical data and be utilized for accident prevention. However, the conventional method requires a significant amount of time and effort to read and identify crucial information. The previous studies primarily focused on analyzing related objects and causes of accidents rather than the construction activities. This study aims to extract construction activities taken by workers associated with accidents by presenting an automated framework that adopts a deep learning-based approach and natural language processing (NLP) techniques to automatically classify sentences obtained from previous construction accident reports into predefined categories, namely TRADE (i.e., a construction activity before an accident), EVENT (i.e., an accident), and CONSEQUENCE (i.e., the outcome of an accident). The classification model was developed using Convolutional Neural Network (CNN) showed a robust accuracy of 88.7%, indicating that the proposed model is capable of investigating the occurrence of accidents with minimal manual involvement and sophisticated engineering. Also, this study is expected to support safety assessments and build risk management systems.
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.430-435
/
1997
통계적인 방법으로 병렬 코퍼스(parallel corpus)로부터 사전정보를 추출해 내는 정렬 시스템에 대한 연구가 세계 여러곳에서 진행되고 있다(신중호 1996; Dagan 1996; Fung 1995; Kupiec 1993). 그 결과로 만들어진 사전정보는 유용한 대역어와 대역 확률을 포함하고 있지만, 불필요하거나 잘못된 요소들도 많이 포함되어 있어 재조정 작업이 필요하다. 이는 사전정보를 직관적으로 확인함으로써 조정을 할 수도 있지만, 좀 더 정확한 조정을 위해 각각의 사전정보(정렬의 결과)가 코퍼스의 어떤 문장에서 나온 것인가 등을 확인할 필요가 있다. 정렬 워크벤치는 이와 같은 작업을 효율적으로 처리할 수 있도록 만들어졌으며, 현재 구현되어 작동되고 있다. 본 논문에서는 정렬 워크벤치를 위해 필요한 정렬시스템의 변형과 사전작업의 편의를 위해 제공되어져야 하는 기능 등에 관하여 설명하고, 간단한 평가 결과를 설명한다.
Proceedings of the Korean Society for Language and Information Conference
/
2002.02a
/
pp.59-68
/
2002
In this paper, we address two questions concerning negative imperatives in Korean: (i) what is the morpho-syntactic nature of mal in negative imperatives\ulcorner; and (ii) why is it impossible to form negative imperatives with short negation an\ulcorner We will argue that the clause structure of imperatives include a projection of deontic modality and a projection of imperative operator encoding illocutionary force, and that oaf is a lexicalization of long negation and deontic modality. We then propose that a negative imperative with short negation is ruled out because such construction maps onto incoherent interpretation which can be spelled out as I direct you to bring about a negative state or a negative event.
Stack LSTM기반 의존 파싱은 전이 기반 파싱에서 스택과 버퍼의 내용을 Stack LSTM으로 인코딩하여 이들을 조합하여 파서 상태 벡터(parser state representation)를 유도해 낸후 다음 전이 액션을 결정하는 방식이다. Stack LSTM기반 의존 파싱에서는 버퍼 초기화를 위해 단어 표상 (word representation) 방식이 중요한데, 한국어와 같이 형태적으로 복잡한 언어 (morphologically rich language)의 경우에는 무수히 많은 단어가 파생될 수 있어 이들 언어에 대해 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있다. 본 논문에서는 Stack LSTM 을 한국어 의존 파싱에 적용하기 위해 음절-태그과 형태소의 표상들을 결합 (hybrid)하여 단어 표상을 얻어내는 합성 방법을 제안한다. Sejong 테스트셋에서 실험 결과, 제안 단어표상 방법은 음절-태그 및 형태소를 이용한 방법을 더욱 개선시켜 UAS 93.65% (Rigid평가셋에서는 90.44%)의 우수한 성능을 보여주었다.
Annual Conference on Human and Language Technology
/
1998.10c
/
pp.97-104
/
1998
인터넷의 사용자가 폭발적으로 증가함에 따라, 인터넷을 이용한 다양한 정보 서비스가 생성되었으며, 이로 인해 일반 사용자들이 접할 수 있는 디지털 문서의 양은 기하 급수적으로 증가 되었다. 본 논문에서는 유사한 정보를 갖는 다량의 문서들로부터 사용자가 원하는 정보만을 추출하는 정보 추출 시스템의 개발 과정 및 결과를 기술한다. 개발된 시스템은 필요한 정보를 포함하는 문장들을 걸러 낸 후, 필요한 사실정보의 출현을 나타내는 패턴을 사용한 유한 오토마타를 통하여 사용자가 원하는 정보를 추출한다. 관광지 안내 텍스트를 대상으로 한 실험 및 분석 결과를 기술한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.