• 제목/요약/키워드: State Tying

검색결과 23건 처리시간 0.019초

Optimal Decision Tree를 이용한 Unseen Model 추정방법 (Unseen Model Prediction using an Optimal Decision Tree)

  • 김성탁;김회린
    • 대한음성학회지:말소리
    • /
    • 제45호
    • /
    • pp.117-126
    • /
    • 2003
  • Decision tree-based state tying has been proposed in recent years as the most popular approach for clustering the states of context-dependent hidden Markov model-based speech recognition. The aims of state tying is to reduce the number of free parameters and predict state probability distributions of unseen models. But, when doing state tying, the size of a decision tree is very important for word independent recognition. In this paper, we try to construct optimized decision tree based on the average of feature vectors in state pool and the number of seen modes. We observed that the proposed optimal decision tree is effective in predicting the state probability distribution of unseen models.

  • PDF

결정트리기반 음성인식 시스템에서의 음소지속시간 사용방법 (A phoneme duration modeling in a speech recognition system based on decision tree state tying)

  • 구명완;김호경
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2002년도 11월 학술대회지
    • /
    • pp.197-200
    • /
    • 2002
  • In this paper, we propose a phoneme duration modeling in a speech recognition system based on disicion tree state tying. We assume that phone duration has a Gamma distribution. In a training mode, we model mean and variance of each state duration in context-independent phone model based on decision tree state tying. In a recognition mode, we get mean and variance of each context-dependent phone duration form state duration information obtaind during training mode. We make a comparative study of the proposed meth with conventinal methods. Our method results in good performance compared with conventional methods.

  • PDF

Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링 (Decision Tree State Tying Modeling Using Parameter Estimation of Bayesian Method)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제13권1호
    • /
    • pp.243-248
    • /
    • 2015
  • 인식 모델을 구성할 때 정의되지 않은 모델, 인식 모델 구성 후에 추가되어진 모델, 모델이 부족하여 하나의 모델 클러스터링으로 모델링하여 생성된 인식 모델들은 인식률 저하의 원인이 된다. 이러한 원인을 개선하기 위하여 Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링 방법을 제안하였다. 제안 방법은 Bayesian 기법의 파라미터 추정을 통하여 탐색된 결과로부터 결정트리 기반 상태 공유 모델링의 최대 확률 기법에 따라 인식모델을 결정한다. 본 논문에서 제안하여 시뮬레이션 데이터를 이용한 실험 결과에서 제안한 군집화 방식을 비교하여 1.29%의 음성인식 오류감소율을 보였으며, 기존 군집화 방식에 비해 개선된 성능을 보였다.

High-Performance 음성 인식을 위한 Efficient Mixture Gaussian 합성에 관한 연구 (A Study on Gaussian Mixture Synthesis for High-Performance Speech Recognition)

  • 이상복;이철희;김종교
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.195-198
    • /
    • 2002
  • We propose an efficient mixture Gaussian synthesis method for decision tree based state tying that produces better context-dependent models in a short period of training time. This method makes it possible to handle mixture Gaussian HMMs in decision tree based state tying algorithm, and provides higher recognition performance compared to the conventional HMM training procedure using decision tree based state tying on single Gaussian GMMs. This method also reduces the steps of HMM training procedure. We applied this method to training of PBS, and we expect to achieve a little point improvement in phoneme accuarcy and reduction in training time.

  • PDF

혼합 가우시안 군집화를 이용한 상태공유 음향모델 최적화 (A Study on the Optimization of State Tying Acoustic Models using Mixture Gaussian Clustering)

  • 안태옥
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.167-176
    • /
    • 2005
  • 본 논문은 음성인식에 쓰이는 음향모델의 모델링 방법 중 결정트리 상태공유 모델링(DTST)을 기반으로 출력 확률 분포의 혼합 가우시안 수를 줄여 모델을 최적화하는 방법을 제안한다. DTST는 음성학적 지식을 포함할 수 있는 질의어 집합과 유사도를 기반으로 한 결정 방법을 이용하는 것이다. 이때 상태들의 출력 확률 분포의 혼합 가우시안 수를 늘려 인식률을 증가시킬 수 있게 된다. 본 논문에서는 인식률이 최대가 되는 지점에서 혼합 가우시안들을 군집화 하여 그 수를 줄이고자 한다. 군집화 시에 필요한 거리 측정 방법은 유클리드(Euclidean)와 바타챠랴(Bhattacharyya) 방법을 이용하였고, 새로운 가우시안은 거리가 최소가 되는 두 가우시안으로부터 평균과 분산을 다시 계산하여 생성하였다. 증권상장 회사명(STOCKNAME) 1,680개의 단어 데이터베이스를 구성하여 실험한 결과 바타챠랴 방법은 $97.2\%$의 인식률을 유지하면서 전체 혼합 가우시안 수의 비율을 $1.0\%$로 감소시켰고, 유클리드 방법은 $96.9\%$의 인식률을 유지하면서 혼합 가우시안 수의 비율을 $1.0\%$로 감소시켜 모델을 최적화할 수 있었다.

음소 모델링 방식들의 성능 비교 (Performance Comparison of Acoustic Modeling Technique)

  • 송명규
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.377-380
    • /
    • 1998
  • HMM 기반의 음성 인식기를 구현하는데 있어서 모델의 복잡도와 제한된 훈련 데이터 사이의 균형을 유지하는 것은 중요한 문제이다. 중간규모 또는 대용량 어휘 인식 시스템은 정교한 모델을 얻기 위해서 문맥종속 음소 모델링이 필수적이다. 그러나, 제한된 훈련 데이터로는 발생 가능한 모든 context를 포함하기가 어렵고, 더구나 훈련 데이터에서 관찰된 context중에서도 그 관찰빈도가 낮은 것이 많아서 신뢰성 있는 문맥종속 모델들을 얻기에는 여전히 어려움이 따른다. 또한 경우에 따라서는 계산량의 감축을 위하여 모델 규모를 축소시킬 필요도 생긴다. 이러한 문제를 해결하기 위해 본 논문에서는 unit reduction 방법들과 state tying을 이용한 방법들의 성능을 실험을 통해 비교한다. 고립단어 인식 실험결과 state tying을 이용한 방법이 unit reduction에 비하여 우수함을 확인 할 수 있었다.

  • PDF

인체동작구분 퍼지추론시스템 (Human Motion Recognition using Fuzzy Inference System)

  • 진계환;이상복
    • 한국산학기술학회논문지
    • /
    • 제10권4호
    • /
    • pp.722-727
    • /
    • 2009
  • 인체동작상태를 구분하는 기술은 인체활동에 따라 변하는 생체신호의 측정 분석분야, 수면장애의 진단 치료 효과의 스크리닝 검사분야, 만성질환 환자의 운동 상태 진단 운동처방분야에 필요한 기술이다. Armband에 내장된 아날로그 디바이스사의 ADXL202AE을 이용하여 수직방향신호의 평균치(LAA), 수평방향신호의 평균치(TAA), 수직방향 신호의 가속도 변화량의 절대치의 평균치(L-MAD), 수평방향신호의 가속도 변화량의 절대치의 평균치(T-MAD)의 획득과 데이터 처리하여, 인체동작상태(눕기, 앉기, 걷기, 뛰기)를 구분하는 퍼지규칙 기반의 퍼지추론시스템을 구현하였다. 입력데이터(LAA, TAA, L-MAD, T-MAD)와 출력데이터(Lying, Sitting, Walking, Running)의 각 구역에서의 소속정도(menbership degree)와 퍼지규칙은 실험을 통해 얻은 수치 데이터를 사용하여 결정하였다. 눕기$\rightarrow$걷기$\rightarrow$뛰기$\rightarrow$눕기 순으로 생성한 모의실험용 데이터를 분석한 결과, 눕기, 앉기, 걷기, 뛰기의 동작상태 구분율은 각각 100%이었다.

연속 음성 인식 시스템을 위한 향상된 결정 트리 기반 상태 공유 (Improved Decision Tree-Based State Tying In Continuous Speech Recognition System)

  • 김동화;;;김형순;김영호
    • 한국음향학회지
    • /
    • 제18권6호
    • /
    • pp.49-56
    • /
    • 1999
  • 결정 트리 기반 상태 공유 방법은 HMM을 사용하는 많은 연속 음성 인식 시스템에서 강인하고 정확한 문맥 종속 음향 모델링 뿐만 아니라 훈련 중에는 나타나지 않은 모델들의 합성을 위하여 널리 사용되고 있다. 음성 결정 트리를 구성하기 위한 표준적인 방법은 단일 가우시안 트라이폰 모델을 이용한 1계층 프루닝 만을 사용하고 있다. 본 논문에서는 더욱 정교한 음향 모델링을 통하여 인식 성능 향상을 도모하기 위하여 새로운 2가지 접근 방법 즉, 2계층 결정 트리와 복수 혼합 결정 트리를 제안한다. 2계층 결정 트리는 상태 공유와 혼합 가중치 공유를 위하여 2계층 프루닝을 수행하며, 두 번째 계층을 사용하여 공유 상태들도 음성 문맥의 유사도에 따라서 서로 다른 가중치들을 사용할 수 있다. 두 번째 제안된 방법 에서는 훈련 과정 즉, 혼합 분할 및 재추정 과정과 함께 음성 결정 트리가 계속 갱신되어 진다. 복수 혼합 결정 트리를 구성하기 위하여 단일 가우시안 뿐만 아니라 복수 혼합 가우시안 모델이 함께 사용된다. 제안된 방법들을 이용하여 BN-96과 WSJ5k 데이터를 사용한 연속 음성 인식 실험을 수행한 결과, 표준 결정 트리를 사용한 시스템과 비교하여 공유 상태의 개수를 비슷하게 유지하면서 단어 오인식률을 줄일 수 있었다.

  • PDF

결정트리 기반 상태공유 모텔 최적화에 관한 연구 (A Study on Optimization of Decision Tree based State Tying Model)

  • 한명희;이호준;김순협
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(상)
    • /
    • pp.17-20
    • /
    • 2003
  • 본 논문에서는 공유 모델링의 대표적인 방법인 결정트리 기반 상태공유 모델을 기반으로 하여 그 출력 확률 분포의 혼합 가우시안 수를 줄임으로써 모델을 최적화하고자 하였다. 결정트리 기반의 상태공유 모델링은 일반적인 방법을 따랐으며 혼합 가우시안 수를 늘려 인식률이 최대가 되는 지점에서 혼합 가우시안을 클러스터링하여 그 수를 줄였다. 클러스터링 시에 필요한 거리 측정 방법이나 가까운 두 가우시안의 합성 방법을 여러 기법을 실험하였다. 이때 인식률은 클러스터링 이전인 97.2%를 유지하였으며 총 혼합 가우시안의 감소율은 1.0%를 보임으로써 모델을 최적화할 수 있었다.

  • PDF

상태 공유와 결정트리 방법을 이용한 효율적인 문맥 종속 프로세스 모델링 (Efficient context dependent process modeling using state tying and decision tree-based method)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.369-377
    • /
    • 2010
  • HMM(Hidden Markov Model)을 사용하는 어휘 인식 시스템에서 인식 시 훈련 중에 나타나지 않는 모델들로 인해 인식률의 저하를 가져오며 인식 대상 어휘가 변경되거나 추가되면 데이터베이스의 수집과 훈련 과정을 수행하여 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 방법과 모델 공유 방법을 사용하여 효율적인 문맥 종속 프로세스 모델링 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 모델 공유 방법을 이용하여 모델의 재생성 과정을 줄이고 강인하고 정확한 문맥 종속 음향 모델링을 제공한다. 또한, 모델의 수를 줄이고 훈련 중에 나타나지 않는 모델들에 대해 문맥 종속 유사 음소 모델을 제공하여 훈련 중에 나타나지 않는 모델의 문제점을 해결하고 훈련성을 확보하였다. 제안된 방법으로 6종류의 음성 데이터베이스를 이용하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 어휘 종속 인식 실험에서는 98.01%의 성능을 보였고, 어휘 독립 인식 실험에서 97.38%의 성능을 보였다.