• Title/Summary/Keyword: State Space Method

Search Result 1,162, Processing Time 0.029 seconds

Colour Linear Array Image Enhancement Method with Constant Colour

  • Ji, Jing;Fang, Suping;Cheng, Zhiqiang
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.304-312
    • /
    • 2022
  • Digital images of cultural relics captured using line scan cameras present limitations due to uneven intensity and low contrast. To address this issue, this report proposes a colour linear array image enhancement method that can maintain a constant colour. First, the colour linear array image is converted from the red-green-blue (RGB) colour space into the hue-saturation-intensity colour space, and the three components of hue, saturation, and intensity are separated. Subsequently, the hue and saturation components are held constant while the intensity component is processed using the established intensity compensation model to eliminate the uneven intensity of the image. On this basis, the contrast of the intensity component is enhanced using an improved local contrast enhancement method. Finally, the processed image is converted into the RGB colour space. The experimental results indicate that the proposed method can significantly improve the visual effect of colour linear array images. Moreover, the objective quality evaluation parameters are improved compared to those determined using existing methods.

Design of state space pole assignment self-tuning controller for MIMO systems using RPE method (RPE 방법을 이용한 다입출력 시스템의 상태공간 극배치 자기동조 제어기 설계)

  • 강석종;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.90-94
    • /
    • 1986
  • This paper describes expansion of the state space pole assignment self-tuning control of SISO systems with system noise and abservation noise to that of MIMO systems. Resursive Prediction Error method is used for both parameter and state estimation in the block controllable canonical form. This simplifies the state feedback law by eliminating the online computation of transformation matrix.

  • PDF

Rovibrational Energy Transitions and Coupled Chemical Reaction Modeling of H+H2 and He+H2 in DSMC

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.347-359
    • /
    • 2015
  • A method of describing the rovibrational energy transitions and coupled chemical reactions in the direct simulation Monte Carlo (DSMC) calculations is constructed for $H(^2S)+H_2(X^1{\Sigma}_g)$ and $He(^1S)+H_2(X^1{\Sigma}_g)$. First, the state-specific total cross sections for each rovibrational states are proposed to describe the state-resolved elastic collisions. The state-resolved method is constructed to describe the rotational-vibrational-translational (RVT) energy transitions and coupled chemical reactions by these state-specific total cross sections and the rovibrational state-to-state transition cross sections of bound-bound and bound-free transitions. The RVT energy transitions and coupled chemical reactions are calculated by the state-resolved method in various heat bath conditions without relying on a macroscopic properties and phenomenological models of the DSMC. In nonequilibrium heat bath calculations, the state-resolved method are validated with those of the master equation calculations and the existing shock-tube experimental data. In bound-free transitions, the parameters of the existing chemical reaction models of the DSMC are proposed through the calibrations in the thermochemical nonequilibrium conditions. When the bound-free transition component of the state-resolved method is replaced by the existing chemical reaction models, the same agreement can be obtained except total collision energy model.

A design of a robust adaptive fuzzy controller globally stabilizing the multi-input nonlinear system with state-dependent uncertainty (상태변수 종속 불확실성이 포함된 다입력 비선형 계통에 대한 전역 안정성이 보장되는 견실한 적응 퍼지 제어기 설계)

  • Park, Young-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.297-305
    • /
    • 1996
  • In this paper a novel robust adaptive fuzzy controller for the nonlinear system with state-dependent uncertainty is proposed. The conventional adaptive fuzzy controller determines the function of state variable bounding the state-dependent uncertain term in the system dynamics on the local state space by off-line calculation. Whereas the proposed method determines that function by the fuzzy inference so that it guarantees the stability of the closed loop system globally on the whole state space. In addition, the method is applicable to the multi-input system. We applied the proposed method to the Burn Control of the Tokamak fusion reactor whose dynamics contains the state-dependent uncertainty and proved the effectiveness of the scheme by using the simulation results.

  • PDF

Validation on Residual Variation and Covariance Matrix of USSTRATCOM Two Line Element

  • Yim, Hyeon-Jeong;Chung, Dae-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.287-293
    • /
    • 2012
  • Satellite operating agencies are constantly monitoring conjunctions between satellites and space objects. Two line element (TLE) data, published by the Joint Space Operations Center of the United States Strategic Command, are available as raw data for a preliminary analysis of initial conjunction with a space object without any orbital information. However, there exist several sorts of uncertainties in the TLE data. In this paper, we suggest and analyze a method for estimating the uncertainties in the TLE data through mean, standard deviation of state vector residuals and covariance matrix. Also the estimation results are compared with actual results of orbit determination to validate the estimation method. Characteristics of the state vector residuals depending on the orbital elements are examined by applying the analysis to several satellites in various orbits. Main source of difference between the covariance matrices are also analyzed by comparing the matrices. Particularly, for the Korea Multi-Purpose Satellite-2, we examine the characteristics of the residual variation of state vector and covariance matrix depending on the orbital elements. It is confirmed that a realistic consideration on the space situation of space objects is possible using information from the analysis of mean, standard deviation of the state vector residuals of TLE and covariance matrix.

State-space formulation for simultaneous identification of both damage and input force from response sensitivity

  • Lu, Z.R.;Huang, M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.157-172
    • /
    • 2011
  • A new method for both local damage(s) identification and input excitation force identification of beam structures is presented using the dynamic response sensitivity-based finite element model updating method. The state-space approach is used to calculate both the structural dynamic responses and the responses sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to structural physical parameters are calculated in time domain and compared to those by using Newmark method in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are identified from only several acceleration measurements. Local damages and the input excitation force are identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method.

Cointegration Analysis with Mixed-Frequency Data of Quarterly GDP and Monthly Coincident Indicators

  • Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.925-932
    • /
    • 2012
  • The article introduces a method to estimate a cointegrated vector autoregressive model, using mixed-frequency data, in terms of a state-space representation of the vector error correction(VECM) of the model. The method directly estimates the parameters of the model, in a state-space form of its VECM representation, using the available data in its mixed-frequency form. Then it allows one to compute in-sample smoothed estimates and out-of-sample forecasts at their high-frequency intervals using the estimated model. The method is applied to a mixed-frequency data set that consists of the quarterly real gross domestic product and three monthly coincident indicators. The result shows that the method produces accurate smoothed and forecasted estimates in comparison to a method based on single-frequency data.

Analysis and Design of DC-DC Converter with Independent Dual Outputs (독립적인 이중 출력을 갖는 DC-DC 컨버터의 해석 및 설계)

  • Heo, Tae-Won;Park, Ji-Ho;Kim, Dong-Wan;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.171-178
    • /
    • 2005
  • The proposed dual-output DC-DC converter that bases on flyback converter can obtain two output voltage with non-isolated main-output and isolated sub-output at the same time using single-winding high frequency transformer. It can solve problems in multi-winding converter that use one main-switch, and also control quality of isolated sub-output voltage can be improved by additional sub-switch to the second. For analysis and design of the proposed converter system, converters are classified as operation mode from switching state and are become modeling by applying state space averaging method. Steady-state characteristics and dynamic characteristics are analyzed by DC component and perturbation component from state space averaging model. From experiment converter, validity of analysis and design for the propose converter system is confirm.

A Study on the Interrelationship between Geometry and Nonlinear Figure of Space (기하학과 비선형 공간 형태의 상관성에 관한 기초 연구)

  • Lee Chul-Jae
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.1
    • /
    • pp.160-167
    • /
    • 2005
  • The paper raises a question in argument about the method of creating space depending on accidental creation by computer as the method of describing movement pattern, and emphasizes the role of the mathematics which may change the shape into the image or reflection, that is, data which human may understand and expect. If the mathematics could be the method of describing movement pattern, it may play a important role on the analysis of architectural space based on the idea of post-constructionism, which is likely to consider the modern architectural space recognized as the sequential frames containing movement, as the suspended state of the moving object. And then, this infinite series, 'the sum' of the suspended state, is not studied mathematically and scientifically, but is able to be shaped by reviewing the validity in mathematics about the nonlinear space. This is, therefore, the fundamental research in order to define the role of the mathematics in formation of space of contemporary architecture.

Auto Setup Method of Best Expression Transfer Path at the Space of Facial Expressions (얼굴 표정공간에서 최적의 표정전이경로 자동 설정 방법)

  • Kim, Sung-Ho
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents a facial animation and expression control method that enables the animator to select any facial frames from the facial expression space, whose expression transfer paths the system can setup automatically. Our system creates the facial expression space from approximately 2500 captured facial frames. To create the facial expression space, we get distance between pairs of feature points on the face and visualize the space of expressions in 2D space by using the Multidimensional scaling(MDS). To setup most suitable expression transfer paths, we classify the facial expression space into four field on the basis of any facial expression state. And the system determine the state of expression in the shortest distance from every field, then the system transfer from the state of any expression to the nearest state of expression among thats. To complete setup, our system continue transfer by find second, third, or fourth near state of expression until finish. If the animator selects any key frames from facial expression space, our system setup expression transfer paths automatically. We let animators use the system to create example animations or to control facial expression, and evaluate the system based on the results.