• 제목/요약/키워드: State Estimation System

검색결과 884건 처리시간 0.033초

State observer design for noise reduction and state estimation in the photovoltaic power generation system (태양광 발전 시스템의 노이즈 감소와 상태추정을 위한 상태관측기 설계)

  • Kim, Il-Song
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.369-371
    • /
    • 2007
  • Due to the measurement noise or system noise, the performance of photovoltaic power generation system can be degraded. If this noise is contained in the solar array voltage measurement signal, the correct operation of the maximum power point tracker can not be guaranteed. The application of the extended Kalman filter to the photovoltaic system can obtain enhanced states estimation result. The Kalman filter provides a recursive solution to optimally estimate from random noise signals. Additionally, as a consequence of Kalman filter, the unmeasurable state such as inductor current can be estimated without current sensor. The methods for system modeling and extended Kalman filter design are presented and the experimental results verify the validity of the proposed system.

  • PDF

Algorithm of Harmonic State Estimation for Power Systems (전력시스템 고조파 상태추정알고리즘 개발)

  • Wang, Y.P.;Chong, H.H.;Chong, J.W.;Han, H.H.;Kwak, N.H.;Jeon, Y.S.;Park, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.149-150
    • /
    • 2006
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Intelligent Algorithms (IAs). This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Intelligent Algorithms (IAs) in the Harmonic State Estimation(HSE).

  • PDF

A Study on the Analysis and State Estimation of Bilinear Systems via Orthogonal Functions (직교함수에 의한 쌍일차계의 해석 및 상태 추정에 관한 연구)

  • 안두수;신재선
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • 제39권6호
    • /
    • pp.598-606
    • /
    • 1990
  • Common problems encountered when orthogonal functions are used in system analysis and state estimation are the time consuming process of high order matrix inversion required in finding the Kronecker products and the truncation errors. In this paper, therefore, a method for the analysis of bilinear systems using Walsh, Block pulse, and Haar functions is devised, Then, state estimation of bilinear system is also studied based on single term expansion of orthogonal functions. From the method presented here, when compared to the other conventional methods, we can obtain the results with simpler computation as the number of interval increases, and the results approach the original function faster even at randomly chosen points regardless of the definition of intervals. In addition, this method requires neither the inversion of large matrices on obtaining the expansion coefficients nor the cumbersome procedures in finding Kronecker products. Thus, both the computing time and required memory size can be significantly reduced.

  • PDF

Reduction of Steady-State Error Using Estimation for Re-Entry Trajectory (추정을 이용한 재진입 궤적의 정상상태 오차감소)

  • 박수홍;이대우
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.130-134
    • /
    • 2001
  • In the re-entry control system, errors apt to induce because the time derivative of drag acceleration is analytically estimated. Still more, the difficulty of estimation of the exact drag coefficient in hypersonic velocity and the nun-reality of the scale height cause a steady-state drag error. This paper proposes the additional method of the disturbance observer. This reduces the steady-state drag error according to the following series. First, this method estimates a error in drag acceleration time derivative by the analytic calculation and then creates the new drag acceleration time derivative using the estimated error. The performance of the re-entry control system is verified about 32 reference trajectories.

  • PDF

Application of Immune Algorithm for Harmonic State Estimation (전력시스템 고조파 상태 추정에서 면역 알고리즘 적용)

  • Wang Yong-Peel;Park In-Pyo;Chung Hyeng-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제53권12호
    • /
    • pp.645-654
    • /
    • 2004
  • The design of a measurement system to perform Harmonic State Estimation(HSE) is a very complex problem. In particular, the number of available harmonic analysis measurement instruments is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents an optimal algorithm of HSE which is based on an optimal placement of measurement points using Immune Algorithm (IAs). This IA-HSE has been applied to power system for the validation of an optimal algorithm of HSE. The study results have indicated an economical and effective method for optimal placement of measurement points using Immune Algorithm (IAs) in the HSE.

An Enhanced Target State Estimation using Covariance Analysis Techniques for a Monopulse Sonar System (공분산 행렬 해석기법을 이용한 모노펄스 소나 표적상태 추정 성능 향상 기법)

  • Lee, Chang-Ho;Kim, Jea-Soo;Lee, Sang-Young;Kim, Kang;Oh, Woun-Chun;Cho, Woon-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권1호
    • /
    • pp.34-39
    • /
    • 1996
  • Target state estimation is a fundamental problem of the sonar signal processing. In this paper, the covariance analysis techniques are applied to enhance the performance of the target state estimation of a monopulse sonar system. MOST, the artificial target signal generator based on the highlight model is used to generate signals in various target states. The performance of the developed method has been evaluated by applying it to the various S/N. The enhanced performance of the covariance analysis method presented in this paper is discussed.

  • PDF

Learning of Differential Neural Networks Based on Kalman-Bucy Filter Theory (칼만-버쉬 필터 이론 기반 미분 신경회로망 학습)

  • Cho, Hyun-Cheol;Kim, Gwan-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제17권8호
    • /
    • pp.777-782
    • /
    • 2011
  • Neural network technique is widely employed in the fields of signal processing, control systems, pattern recognition, etc. Learning of neural networks is an important procedure to accomplish dynamic system modeling. This paper presents a novel learning approach for differential neural network models based on the Kalman-Bucy filter theory. We construct an augmented state vector including original neural state and parameter vectors and derive a state estimation rule avoiding gradient function terms which involve to the conventional neural learning methods such as a back-propagation approach. We carry out numerical simulation to evaluate the proposed learning approach in nonlinear system modeling. By comparing to the well-known back-propagation approach and Kalman-Bucy filtering, its superiority is additionally proved under stochastic system environments.

Power System State Estimation and Identification in Consideration of Line Switching (선로개폐상태를 포함하는 전력통계 상태추정및 동정)

  • 박영문;유석한
    • 전기의세계
    • /
    • 제28권3호
    • /
    • pp.57-64
    • /
    • 1979
  • The static state estimation are divided into two groups; estimation and detection & identification. This paper centers on detection and identification algorithm. Especially, the identification of line errors is focused on and is performed by the extended W.L.S. algorithm with line swithching states. Here, line switching states mean the discrete values of line admittance which are influenced by unexpected line switching. The numerical results are obtained from the assumption that the noise vector is independent zero mean Gaussian random variables.

  • PDF

State-Space Model Based On-Line Parameter Estimation for Time-Delay Systems

  • Choi, Young-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.76.5-76
    • /
    • 2001
  • This paper considers the parameter estimation for the state-space model based time-delay systems in the case that the Lyapunov stability of the system is guaranteed. In order to estimate the parameters, two estimation methods can be proposed which are known as the parallel model and the series parallel model. It is shown that the parameters can be estimated using each method, and also certied that the results are correct by simulations.

  • PDF

An Optimal Fixed-lag FIR Smoother for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 고정 시간 지연 FIR 평활기)

  • Kwon, Bo-Kyu;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제20권1호
    • /
    • pp.1-5
    • /
    • 2014
  • In this paper, we propose an optimal fixed-lag FIR (Finite-Impulse-Response) smoother for a class of discrete time-varying state-space signal models. The proposed fixed-lag FIR smoother is linear with respect to inputs and outputs on the recent finite horizon and estimates the delayed state so that the variance of the estimation error is minimized with the unbiased constraint. Since the proposed smoother is derived with system inputs, it can be adapted to feedback control system. Additionally, the proposed smoother can give more general solution than the optimal FIR filter, because it reduced to the optimal FIR filter by setting the fixed-lag size as zero. A numerical example is presented to illustrate the performance of the proposed smoother by comparing with an optimal FIR filter and a conventional fixed-lag Kalman smoother.