• 제목/요약/키워드: State Estimation System

검색결과 880건 처리시간 0.026초

Robust State Estimation Based on Sliding Mode Observer for Aeroelastic System

  • Jeong In-Joo;Na Sungsoo;Kim Myung-Hyun;Shim Jae-Hong;Oh Byung-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.540-548
    • /
    • 2005
  • This paper concerns the application and demonstration of sliding mode observer for aeroelastic system, which is robust to model uncertainty including mass and stiffness of the system and various disturbances. The performance of a sliding mode observer is compared with that of a conventional Kalman filter to demonstrate robustness and disturbance decoupling characteristics. Aeroelastic instability may occur when an elastic structure is moving even in subcritical flow speed region. Simulation results using sliding mode observer are presented to control aeroelastic response of flapped wing system due to various external excitations as well as model uncertainty and sinusoidal disturbances in subcritical incompressible flow region.

이중 잡음모델을 채용한 통합 GPS/DR 시스템의 측위성능개선 (Position-Fix Improvement of Integrated GPS and DR System Using Two-Level Noise Model)

  • 남찬웅;임상석
    • 한국항행학회논문지
    • /
    • 제2권2호
    • /
    • pp.75-83
    • /
    • 1998
  • 본 논문에서는 저가이면서 높은 정확도를 갖는 GPS와 DR의 통합시스템 및 이 시스템의 위치 결정에 수반되는 오차문제를 고려한다. 이 통합 GPS/DR 시스템은 실시간 또는 비 실시간으로 고정밀도의 위치 정보를 제공하는 성능을 갖는다. DR 측정치에 영향을 주는 주요 오차 요인을 분석하여 이를 8개의 상태 변수의 모델로 표현하였다. 이들 변수의 상태 방정식을 사용하여 DR신호가 제공되는 매 순간에서 상태 변수값을 추산하기 위한 통합시스템용 비선형 필터를 개발한다, 1Hz의 DR 측정치와 3Hz로 제공되는 GPS 위치 정보를 위치 추산치에 대해 이 통합시스템의 정확도를 평가한다. 시뮬레이션을 통해 GPS신호가 정전되는 기간동안 통합 시스템의 성능을 두 가지 서로 다른 잡음모델에 대해 비교 검토한다. 두 잡음모델 중 하나는 단일잡용을 사용하는 반면에 또 다른 모델은 이중 잡음 모델을 채용한다. 시뮬레이션 결과로부터 이중 잡음 모델을 채용하는 GPS/DR 통합시스템은 단일 잡음 모델을 이용하는 경우에 비하여 측위성능이 우수함을 확인하였다.

  • PDF

이산 칼만 필터를 이용한 구동 출력 토크 추정 (Driveline Output Torque Estimation Using Discrete Kalman Filter)

  • 김기우
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.68-75
    • /
    • 2012
  • This paper presents a study on the driveline output torque estimation using a discrete Kalman filter. The in-situ output shaft torque is first measured by a non-contacting magneto-elastic torque transducer. The linear state-space system equations are first derived and the discrete Kalman filter is designed based on the Kalman filter theory to recover the driveline output torque contaminated by random noises. In addition to using torque measurement, the estimation of the output torque using two angular velocities: the output and wheel, is also conducted. The experimental results show that the discrete Kalman filter can be effective for not only removing the random noise in output torque but also estimating the output torque without torque measurement.

원격조종을 위해 불확실한 시간 지연 측정값을 고려한 모션 추정 방법 (Motion Estimation Considering Uncertain Time Delayed Measurements for Remote Control)

  • 최민용;정완균;최원섭;이상엽;박종훈
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.792-799
    • /
    • 2008
  • Motion estimation is crucial in a remote control for its convenience or accuracy. Time delays, however, can occur in the problem because data communication is required through a network. In this paper, state estimation problem with uncertain time delayed measurements is addressed. In dynamic system with noise, after taking measurements, it often requires some time until that is available in the filter algorithm. Standard filters not considering this time delays cannot be used since the current measurement is related with a past state. These delayed measurements are solved with augmented extended Kalman filter, and the uncertainty of delayed time is also resolved based on an explicit formulation. The proposed method is analyzed and verified by simulations.

퍼지-ANN 제어기를 이용한 유도전동기의 속도 추정 및 제어 (Estimation and Control of Speed of Induction Motor using Fuzzy-ANN Controller)

  • 이홍균;이정철;김종관;정동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.545-550
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed estimation and control of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

선형 회귀 분석법을 이용한 머신 러닝 기반의 SOH 추정 알고리즘 (Machine Learning-based SOH Estimation Algorithm Using a Linear Regression Analysis)

  • 강승현;노태원;이병국
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.241-248
    • /
    • 2021
  • A battery state-of-health (SOH) estimation algorithm using a machine learning-based linear regression method is proposed for estimating battery aging. The proposed algorithm analyzes the change trend of the open-circuit voltage (OCV) curve, which is a parameter related to SOH. At this time, a section with high linearity of the SOH and OCV curves is selected and used for SOH estimation. The SOH of the aged battery is estimated according to the selected interval using a machine learning-based linear regression method. The performance of the proposed battery SOH estimation algorithm is verified through experiments and simulations using battery packs for electric vehicles.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

지역 지도와 칼만 필터를 이용한 이동 로봇의 위치 추정 (Localization of Mobile Robot using Local Map and Kalman Filtering)

  • 임병현;김영민;황종선;고낙용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.1227-1230
    • /
    • 2003
  • In this paper, we propose a pose estimation method using local map acquired from 2d laser range finder information. The proposed method uses extended kalman filter. The state equation is a navigation system equation of Nomad Super Scout II. The measurement equation is a map-based measurement equation using a SICK PLS 101-112 sensor. We describe a map consisting of geometric features such as plane, edge and corner. For pose estimation we scan external environments by laser rage finer. And then these data are fed to kalman filter to estimate robot pose and position. The proposed method enables very fast simultaneous map building and pose estimation.

  • PDF

Nonlinear control of an autonomous mobile robot using nonlinear obserbers

  • Ishikawa, Masato;Sampei, Mitsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.400-404
    • /
    • 1994
  • In this paper, we will investigate the position estimation problem for autonomous mobile robots. Formulating this as a state estimation problem for nonlinear SISO system, then we will apply several types of nonlinear observers. Simulation results of observer-based navigation control will be also provided.

  • PDF

A New Parameter Estimation Method for a Zipf-like Distribution for Geospatial Data Access

  • Li, Rui;Feng, Wei;Wang, Hao;Wu, Huayi
    • ETRI Journal
    • /
    • 제36권1호
    • /
    • pp.134-140
    • /
    • 2014
  • Many reports have shown that the access pattern for geospatial tiles follows Zipf's law and that its parameter ${\alpha}$ represents the access characteristics. However, visits to geospatial tiles have temporal and spatial popularities, and the ${\alpha}$-value changes as they change. We construct a mathematical model to simulate the user's access behavior by studying the attributes of frequently visited tile objects to determine parameter estimation algorithms. Because the least squares (LS) method in common use cannot obtain an exact ${\alpha}$-value and does not provide a suitable fit to data for frequently visited tiles, we present a new approach, which uses a moment method of estimation to obtain the value of ${\alpha}$ when ${\alpha}$ is close to 1. When ${\alpha}$ is further away from 1, the method uses the associated cache hit ratio for tile access and uses an LS method based on a critical cache size to estimate the value of ${\alpha}$. The decrease in the estimation error is presented and discussed in the section on experiment results. This new method, which provides a more accurate estimate of ${\alpha}$ than earlier methods, promises more effective prediction of requests for frequently accessed tiles for better caching and load balancing.