• 제목/요약/키워드: State Estimation System

검색결과 884건 처리시간 0.024초

보행용 관성 항법 시스템을 위한 HMMS를 통한 걸음 단계 구분 (Gait State Classification by HMMS for Pedestrian Inertial Navigation System)

  • 박상경;서영수
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.1010-1018
    • /
    • 2009
  • An inertial navigation system for pedestrian position tracking is proposed, where the position is computed using inertial sensors mounted on shoes. Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it needs to reset errors frequently. During normal walking, there is an almost periodic zero velocity instance when a foot touches the floor. Using this fact, estimation errors are reduced and this method is called the zero velocity updating algorithm. When implementing this zero velocity updating algorithm, it is important to know when is the zero velocity interval. The gait states are modeled as a Markov process and each state is estimated using the hidden Markov model smoother. With this gait estimation, the zero or nearly zero velocity interval is more accurately estimated, which helps to reduce the position estimation error.

전류측정성분과 불량정보 검출을 고려한 전력계통에서의 상태추정에 관한 연구 (State Estimation Considering Current Measurement Component and Bad Data Detection)

  • 김준현;이종범
    • 대한전기학회논문지
    • /
    • 제35권7호
    • /
    • pp.261-271
    • /
    • 1986
  • This paper describes a method for the state estimation considering current measurement component and detection of the bad data. The state values are estimated by weighted least square method in which measurement vector included bus injection current and line current. The bad data are detected using standardized variable of normal distribution and identified using sensitivity coefficients. When the bad data were occured by the bad measurement values. The results of the application to the model power system reveal the effectiveness of the presented algorithms.

  • PDF

Online State-of-health(SOH) estimation for a LiMn2O4 cell based on fuzzy-logic

  • Kim, Jonghoon;Nikitenkov, Dmitry;Park, Jungpil
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.447-448
    • /
    • 2013
  • This paper investigates a new approach based on the fuzzy-logic controlled methodology that is suitable for analyzing and evaluating large format $LiMn_2O_4$ cell performance via online state-of-health (SOH) estimation for energy storage system (ESS) applications. First of all, the values of the cell resistance R and maximum cell capacity $Q_{max}$ are calculated from three factors such as voltage, current, and time that were measured by discharging/charging sequence. Then, using two values R and $Q_{max}$ previously calculated, present SOH of an arbitrary $LiMn_2O_4$ cell can be estimated using the defined fuzzy-logic inference system. The main advantage of this approach is wide parameters tuning possibility for good correspondence of SOH decay with other accurate estimation method and the possibility to perform suitable online SOH estimation.

  • PDF

LMI기법을 이용한 준최적 강인 칼만 필터의 설계 (Design of suboptimal robust kalman filter using LMI approach)

  • 진승희;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1477-1480
    • /
    • 1997
  • This paper is concerned with the design of a suboptimal robust Kalman filter using LMI approach for system models in the state space, which are subjected to parameter uncertainties in both the state and measurement atrices. Under the assumption that augmented system composed of the uncertain system and the state estimation error dynamics should be stable, a Lyapunov inequality is obtained. And from this inequaltiy, the filter design problem can be transformed to the gneric LMI problems i.e., linear objective minimization problem and generalized eigenvalue minimization problem. When applied to uncertain linear system modles, the proposed filter can provide the minimum upper bound of the estimation error variance for all admissible parameter uncertainties.

  • PDF

DUMMY모선을 고려한 상태추정 측정점선정 알고리즘에 관한 연구 (A Study on Measurement Selection Algorithm for Power System State Estimation Under the Consideration of Dummy Buses)

  • 문영현;이태식
    • 대한전기학회논문지
    • /
    • 제41권2호
    • /
    • pp.107-117
    • /
    • 1992
  • This paper presents an improved algorithm of optimal measurement design with a reliability evaluation method for a large power system. The proposed algorithm is developed to consider the dummy bus and to achieve highest accuracy of the state estimator as well with the limited investment cost. The dummy bus in the power system is impossible to install measurement meter, while real and reactive power measurements is considered in the proposed algorithm. On the other hand, P/C model is developed by taking advantage of the matrix sparsity. The improved program is successfully tested for KEPCO system with PSS/E lineflow calculated data package.

  • PDF

개선된 블록 펄스 계수 추정 기법을 이용한 선형 시불변계의 상태 추정에 관한 연구 (A Study on The State Estimation of The Time-Invariant Linear Systems via The Improved Parameter Estimation Method for The Block Pulse Coefficients)

  • 김태훈;김진태;정제욱;심재선
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권4호
    • /
    • pp.137-143
    • /
    • 2002
  • Because Block Pulse functions are used in a variety of fields such as the analysis and controller design of systems, it is necessary to find the more exact value of the Block Pulse series coefficients. This paper presents a method for the state estimation of the time-invariant linear systems via the improved estimation method for the Block Pulse coefficients by using the Simpson's rule. The proposed method using the Simpson's rule improve the accuracy of the Block Pulse coefficients.

비선형 시스템의 상태변수 추정기법 동향 (A Survey on State Estimation of Nonlinear Systems)

  • 장홍;최수항;이재형
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.277-288
    • /
    • 2014
  • This article reviews various state estimation methods for nonlinear systems, particularly with a perspective of a process control engineer. Nonlinear state estimation methods can be classified into the following two categories: stochastic approaches and deterministic approaches. The current review compares the Bayesian approach, which is mainly a stochastic approach, and the MHE (Moving Horizon Estimation) approach, which is mainly a deterministic approach. Though both methods are reviewed, emphasis is given to the latter as it is particularly well-suited to highly nonlinear systems with slow sampling rates, which are common in chemical process applications. Recent developments in underlying theories and supporting numerical algorithms for MHE are reviewed. Thanks to these developments, applications to large-scale and complex chemical processes are beginning to show up but they are still limited at this point owing to the high numerical complexity of the method.

Development of paint area estimation software for ship compartments and structures

  • Cho, Doo-Yeoun;Swan, Sam;Kim, Dave;Cha, Ju-Hwan;Ruy, Won-Sun;Choi, Hyung-Soon;Kim, Tae-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권2호
    • /
    • pp.198-208
    • /
    • 2016
  • The painting process of large ships is an intense manual operation that typically comprises 9-12% of the total shipbuilding cost. Accordingly, shipbuilders need to estimate the required amount of anti-corrosive coatings and painting resources for inventory and cost control. This study aims to develop a software system which enables the shipbuilders to estimate paint area using existing 3D CAD ship structural models. The geometric information of the ships structure are extracted from the existing shipbuilding CAD/CAM system and used to create painting zones. After specifying the painting zones, users can generate the paint faces by clipping structural parts inside each zone. Finally, the paint resources may be obtained from the product of the paint areas and required paint thickness. Implementing the developed software system to real shipbuilders' operations has contributed to improved productivity, faster resource estimation, better accuracy, and fewer coating defects over their conventional manual calculation methods for painting resource estimation.

THE SOC ESTIMATION OF THE LEAD-ACID BATTERY USING KALMAN FILTER

  • JEON, YONGHO
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.851-858
    • /
    • 2021
  • In general, secondary batteries are widely used as an electric energy source. Among them, the state of energy storage of mobile devices is very important information. As a method of estimating a state, there is a method of estimating the state by integrating the current according to an energy storage state of a battery, and a method of designing a state estimator by measuring a voltage and estimating a charge amount based on a battery model. In this study, we designed the state estimator using an extended Kalman filter to increase the precision of the state estimation of the charge amount by including the error of the system model and having the robustness to the noise.

모델링 불확실성을 갖는 이산구조 비선형 시스템을 위한 유한 임펄스 응답 고정구간 스무딩 필터 및 DR/GPS 결합항법 시스템에 적용 (FIR Fixed-Interval Smoothing Filter for Discrete Nonlinear System with Modeling Uncertainty and Its Application to DR/GPS Integrated Navigation System)

  • 조성윤;김경호
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.481-487
    • /
    • 2013
  • This paper presents an FIR (Finite Impulse Response) fixed-interval smoothing filter for fast and exact estimating state variables of a discrete nonlinear system with modeling uncertainty. Conventional IIR (Infinite Impulse Response) filter and smoothing filter can estimate state variables of a system with an exact model when the system is observable. When there is an uncertainty in the system model, however, conventional IIR filter and smoothing filter may cause large errors because the filters cannot estimate the state variables corresponding to the uncertain model exactly. To solve this problem, FIR filters that have fast estimation properties and have robustness to the modeling uncertainty have been developed. However, there is time-delay estimation phenomenon in the FIR filter. The FIR smoothing filter proposed in this paper makes up for the drawbacks of the IIR filter, IIR smoothing filter, and FIR filter. Therefore, the FIR smoothing filter has good estimation performance irrespective of modeling uncertainty. The proposed FIR smoothing filter is applied to the integrated navigation system composed of a magnetic compass based DR (Dead Reckoning) and a GPS (Global Positioning System) receiver. Even when the magnetic compass error that changes largely as the surrounding magnetic field is modeled as a random constant, it is shown that the FIR smoothing filter can estimate the varying magnetic compass error fast and exactly with simulation results.