• Title/Summary/Keyword: State Compensation

Search Result 521, Processing Time 0.029 seconds

A Study on Pricision Positioning Control using a Fuzzy Friction Compensation (퍼지마찰력보상기를 이용한 정밀위치제어에 관한 연구)

  • Yun, S.H.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1045-1049
    • /
    • 1996
  • For the precision positioning and tracking control, the proper friction compensation is essential. The friction causes steady state error. The friction compensation based on the velocity and the controlling input or the desired velocity provides limited performance if the compensation value is fixed. In this paper, a friction compensation scheme using a fuzzy logic is proposed. The friction compensation amount is adjusted depending on the velocity and controlling input. The proposed fuzzy friction compensator with a pole-assignment controller is implemented in a linear positioning system. To illustrate the effectiveness of this scheme, computer simulations and experiments are carried out for the cases of no friction compensation, the proposed fuzzy friction compensation, and another friction compensation scheme based on velocity and control input, and the results are compared with each other.

  • PDF

Compensation for temperature-level control of tanked water system with time delay

  • Nakamura, Masatoshi;Watanabe, Kiyoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.42-47
    • /
    • 1993
  • Importance of separation of a nonlinear dynamical system into nonlinear static part and linear dynamical part was insisted in designing a controller for the nonlinear system. We further proposed compensation techniques for oscillation of controlled variables caused by system time delay and compensation of steady state errors caused by modelling errors of the systems. The proposed principle of designing procedure and the compensation methods were discussed by applying them for temperature and level control of an actual tanked water system.

  • PDF

Anti-Reset windup basd compensation method for state constrained control systems (리셋 와인드엎 방지법에 기초한 상태 제한이 존재하는 제어 시스템의 보상 방법)

  • Park, Jong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.511-520
    • /
    • 1999
  • An anti-reset windup (ARW) based compensation method for state constrained control systems is studied. First, a linear controller is constructed to give a desirable nominal performance ignoring state-constraints of a plant. Then, an additional compensator is introduced to provide smooth performance degradation under state-constraints of the plant. This paper focuses on the effective design method of the additional compensator. By minimizing a reasonable performance index, the proposed compensator is expressed in terms of theplant and ocntroller parameters. The resulting dynamics of the compensated controller exhibits the dominant part of the linear closed-loop system which can be seen from the singular perturbation model reducton theory. THe proposed method guarantees total stability of overall resulting systems if linear controllers were constructed to meet certain condition.

  • PDF

Periodic Adaptive Compensation of State-dependent Disturbance in a Digital Servo Motor System

  • Ahn, Hyo-Sung;Chen, YangQuan;Yu, Won-Pil
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • This paper presents an adaptive controller for the compensation of state-dependent disturbance with unknown amplitude in a digital servo motor system. The state-dependent disturbance is caused by friction and eccentricity between the wheel axis and the motor driver of a mobile robot servo system. The proposed control scheme guarantees an asymptotical stability for both the velocity and position regulation. An experimental result shows the effectiveness of the adaptive disturbance compensator for wheeled-mobile robot in a low velocity diffusion tracking. A comparative experimental study with a simple PI controller is presented.

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.

Sliding Mode Observer (SMO) using Aging Compensation based State-of-Charge(SOC) Estimation for Li-Ion Battery Pack

  • Kim, Jonghoon;Nikitenkov, Dmitry;Denisova, Valeria
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.200-201
    • /
    • 2013
  • This paper investigates a new approach for Li-Ion battery state-of-charge (SOC) estimation using sliding mode observer (SMO) technique including parameters aging compensation via recursive least squares (RLS). The main advantages of this approach would be low computational load, easiness of implementation along with the robustness of the method for internal battery model parameters estimation. The proposed algorithm was first tested on a set of acquired battery data using implementation in Simulink and later developed as C-code module for firmware application.

  • PDF

Design and Control of Grid-connected Photovoltaic system using the state space Modeling (상태공간 모델링을 이용한 계통연계 태양광발전시스템의 설계 및 제어)

  • Hwang, In-Ho;Kim, Si-Kyeong;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.431-433
    • /
    • 1996
  • It is expected that utility interactive small scale dispersed PV system will be widely diffused in the future. This paper discussed the design and control method of single phase PV inverter system with compensation capability of reactive power including harmonic distortion, based on state space modelling. As the results, compensation effects were suggested by simulation and experiment.

  • PDF

The effects of target and missile dynamics on the optimal coriolis acceleration compensation (미사일 및 표적 운동을 고려한 시선지령유도에서의 코리올리 가속도 보상)

  • 류동영;탁민제;엄태윤;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.596-600
    • /
    • 1992
  • In CLOS guidance, feedback compensation of the Coriolis acceleration is used to reduce miss distance. This paper presents the effects of the bandwidth of target and missile on the optimal Coriolis acceleration compensation. A state space formulation of CLOS guidance is used to implement CLOS guidance in feedback form. And the LQR control method is applied to find the optimal feedback gain. From the analysis of the Riccati equations of the optimal control, the following facts are observed: When the target is agile, the optimal gain is reduced, since the compensation becomes ineffective. The missile bandwidth also affects the Coriolis accleration compensation. Narrower missile requires more compensation for the Coriolis acceleration.

  • PDF

Dynamic Compensation Method for State Delayed Control Systems with Input Saturation (입력제한이 존재하는 상태지연 시스템의 동적보상방법)

  • Park, Jong-Koo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.325-331
    • /
    • 2001
  • A dynamic anti-windup method for state delayed control systems with input saturation is considered. Under the assumption that a linear controller has been designed for a state delayed control system based on the existing design technique which shows desirable nominal performance, an additional compensator is incorporated to provide a graceful performance degradation despite of input saturation. By regarding the difference of the controller states in the absence and presence of input saturation as an objective function, the dynamic compensator which minimizes it is determined explicitly. The proposed dynamic compensator is the closed form of plant and controller parameters. The proposed method not only provides graceful performance degradation, but it also guarantees the total stability of resulting systems. An illustrative example is provided to show the effectiveness of the proposed method.

  • PDF

Measurement Time-Delay Error Compensation for Transfer Alignment (전달정렬의 측정치 시간지연 오차보상 기법)

  • Lim, You-Chol;Song, Gi-Won;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF