• Title/Summary/Keyword: State Approximation

Search Result 395, Processing Time 0.032 seconds

A POSTERIORI L(L2)-ERROR ESTIMATES OF SEMIDISCRETE MIXED FINITE ELEMENT METHODS FOR HYPERBOLIC OPTIMAL CONTROL PROBLEMS

  • Hou, Tianliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.321-341
    • /
    • 2013
  • In this paper, we discuss the a posteriori error estimates of the semidiscrete mixed finite element methods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order $k$ Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order $k(k{\geq}0)$. Using mixed elliptic reconstruction method, a posterior $L^{\infty}(L^2)$-error estimates for both the state and the control approximation are derived. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.

Simulation of Voltage and Current Distributions in Transmission Lines Using State Variables and Exponential Approximation

  • Dan-Klang, Panuwat;Leelarasmee, Ekachai
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • A new method for simulating voltage and current distributions in transmission lines is described. It gives the time domain solution of the terminal voltage and current as well as their line distributions. This is achieved by treating voltage and current distributions as distributed state variables (DSVs) and turning the transmission line equation into an ordinary differential equation. Thus the transmission line is treated like other lumped dynamic components, such as capacitors. Using backward differentiation formulae for time discretization, the DSV transmission line component is converted to a simple time domain companion model, from which its local truncation error can be derived. As the voltage and current distributions get more complicated with time, a new piecewise exponential with controllable accuracy is invented. A segmentation algorithm is also devised so that the line is dynamically bisected to guarantee that the total piecewise exponential error is a small fraction of the local truncation error. Using this approach, the user can see the line voltage and current at any point and time freely without explicitly segmenting the line before starting the simulation.

  • PDF

Computation of Unsteady Aerodynamic Forces in the Time Domain for GVT-based Ground Flutter Test (지상 플러터 실험을 위한 시간 영역에서의 비정상 공기력 계산)

  • Lee, Juyeon;Kim, Jonghwan;Bae, Jaesung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • Flutter wind-tunnel test is an expensive and complicated process. Also, the test model may has discrepancy in the structural characteristics when compared to those of the real model. "Dry Wind-Tunnel" (DWT) is an innovative testing system which consists of the ground vibration test (GVT) hardware system and software which computationally can be operated and feedback in real-time to yield rapidly the unsteady aerodynamic forces. In this paper, we study on the aerodynamic forces of DWT system to feedback in time domain. The aerodynamic forces in the reduced-frequency domain are approximated by Minimum-state approximation. And we present a state-space equation of the aerodynamic forces. With the two simulation model, we compare the results of the flutter analysis.

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

New Approach Using the Continued Fraction Expansion for the Dead Time Approximation (Continued Fraction Expansion을 이용한 Dead Time 근사의 새로운 접근)

  • Cho, Won-Hui;Lee, Jie-Tae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.830-836
    • /
    • 2012
  • Dead times appear often in describing process dynamics and raise some difficulties in simulating process dynamics or analyzing process control systems. To relieve these difficulties, it is needed to approximate the infinite dimensional dead time by the finite dimensional transfer function and, for this, the Pade approximation method is often used. For the accurate approximation of the dead time, high order Pade approximation is needed and the high order Pade approximation is not easy to memorize and is not stable numerically. We propose a method based on the continued fraction expansion that provides the same transfer functions. The method is excellent numerically as well as systematic to be memorized easily. It can be used conveniently for the process control lecture and computations.

Performance Evaluation of a CONWIP System with Compound Poisson Demands and Coxian Processing Times (복합포아송 수요와 Coxian 가공시간을 갖는 CONWIP 시스템의 성능평가)

  • 박찬우;이효성
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.63-79
    • /
    • 2006
  • In this study we consider a CONWIP system in which the processing times at each station follow a Coxian distribution and the demands for the finished products arrive according to a compound Poisson process. The demands that are not satisfied immediately are either backordered or lost according to the number of demands that exist at their arrival Instants. For this system we develop an approximation method to calculate performance measures such as steady state probabilities of the number of parts at each station, proportion of lost demands and the mean number of backordered demands. For the analysis of the proposed CONWIP system, we model the CONWIP system as a closed queueing network with a synchronization station and analyze the closed queueing network using a product-form approximation method. A recursive technique is used to solve the subnetwork in the application of the product-form approximation method. To test the accuracy of the approximation method, the results obtained from the approximation method are compared with those obtained by simulation. Comparisons with simulation show that the approximation method provides fairly good results.

ESTIMATION OF THE SINGULAR COEFFICIENT IN THE STEADY STATE DIFFUSION EQUATION

  • Cho, Chung-Ki
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.309-323
    • /
    • 2002
  • This paper studies the parameter estimation problem for a steady state flow in an inhomogeneous medium. Our approximation scheme could be used when the diffusion coefficient is singular. The function space parameter estimation convergence(FSPEC) is considered and numerical simulations are performed.

A study on an effective tuning of a nonlinear state observer (비선형 상태 변수 관측기의 효과적인 이득 선정에 관한 연구)

  • 이훈구;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.636-641
    • /
    • 1993
  • Recent researches on control theory enable nonlinear state feedback which is more closer to real system without approximation. To apply nonlinear control theories, all state variables should be measured or estimated. In this paper, a technique of designing nonlinear state observer for a particular class of nonlinear system is presented. The result is applied to an aircraft model to prove the convergency of observation error.

  • PDF

Aeroelastic Analysis of Deployable Missile Control Fin with Bilinear Nonlinearity (이선형 비선형성을 포함하는 접는 미사일 조종날개의 공탄성 해석)

  • Bae, Jae-Sung;Shin, Won-Ho;Lee, In;Shin, Young-Sug
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.29-35
    • /
    • 2002
  • Aeroelastic characteristics of a deployable missile control fin have been investigated. A deployable missile control fin is modeled by a 2-dimensional typical section. Supersonic Doublet-Point method is used for the computation of supersonic unsteady aerodynamic forces and Karpel's Minimum-State approximation is used for the aerodynamic approximation. Root-locus method and time-integration method are used for the linear and nonlinear flutter analyses. For the nonlinear flutter analysis the deployable hinge is represented by a asymmetric bilinear spring and is linearized by using the describing function method. From the flutter analyses, the effects of nonlinear parameters on the aeroelastic characteristics are investigated.

Extraction of rational functions by forced vibration method for time-domain analysis of long-span bridges

  • Cao, Bochao;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.561-577
    • /
    • 2013
  • Rational Functions are used to express the self-excited aerodynamic forces acting on a flexible structure for use in time-domain flutter analysis. The Rational Function Approximation (RFA) approach involves obtaining of these Rational Functions from the frequency-dependent flutter derivatives by using an approximation. In the past, an algorithm was developed to directly extract these Rational Functions from wind tunnel section model tests in free vibration. In this paper, an algorithm is presented for direct extraction of these Rational Functions from section model tests in forced vibration. The motivation for using forced-vibration method came from the potential use of these Rational Functions to predict aerodynamic loads and response of flexible structures at high wind speeds and in turbulent wind environment. Numerical tests were performed to verify the robustness and performance of the algorithm under different noise levels that are expected in wind tunnel data. Wind tunnel tests in one degree-of-freedom (vertical/torsional) forced vibration were performed on a streamlined bridge deck section model whose Rational Functions were compared with those obtained by free vibration for the same model.