• Title/Summary/Keyword: Starting method

Search Result 1,712, Processing Time 0.034 seconds

Selection of Motor Starting Method by Numeric Simulation (기동시뮬레이션 방법에 의한 유도전동기 기동방식 선정)

  • Chang, Chung-Koo;Suh, Sang-Jin;Lee, Min-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.817-820
    • /
    • 2002
  • Since a squirrel cage induction motor by NEMA Design types is designed to withstand full-voltage starting, direct starting method can be the most economical one. Starting a squirrel cage motor from standstill by connecting it directly across the line may allow inush currents of approximately 500-600% of rated current at lagging power factor of 35-50%. For many of the large motors, the starting inrush current may be great enough to cause voltage dips, which may adversely affect the building's lighting system. Electric utilities also have restrictions on starting currents, so that voltage fluctuations can be held to prescribed limits. Therefore the need for choosing the most appropriate method of motor starting is quite essential. In this paper, we proposed a plan for the selection of the most appropriate motor starting method, first by way of numeric simulation using manufacturer's data and second by way of actual experience. So far, more often than not, the selection of motor starting method has been accomplished only as regards to the capacity of the motor and the frequency of starting and stopping. But nowadays such high-tech apparatus as soft starters are being developed, and we are on the position to give more attention to clarify the way of selection of the motor starting method.

  • PDF

Investigation of Efficiency of Starting Iteration Vectors for Calculating Natural Modes (고유모드 계산을 위한 초기 반복벡터의 효율성 연구)

  • Kim, Byoung-Wan;Kyoung, Jo-Hyun;Hong, Sa-Young;Cho, Seok-Kyu;Lee, In-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.112-117
    • /
    • 2005
  • Two modified versions of subspace iteration method using accelerated starting vectors are proposed to efficiently calculate free vibration modes of structures. Proposed methods employ accelerated Lanczos vectors as starting iteration vectors in order to accelerate the convergence of the subspace iteration method. Proposed methods are divided into two forms according to the number of starting vectors. The first method composes 2p starting vectors when the number of required modes is p and the second method uses 1.5p starting vectors. To investigate the efficiency of proposed methods, two numerical examples are presented.

Accelerated Starting Vectors for Analysis of Natural Modes of Structures (구조물의 고유모드 해석을 위한 가속화된 초기벡터 구성기법)

  • 김병완;정형조;이인원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.784-787
    • /
    • 2004
  • Modified version of subspace iteration method using accelerated starting vectors is proposed to efficiently calculate free vibration modes of structures. Proposed method employs accelerated Lanczos starting vectors that can reduce the number of iterations in the subspace iteration method. Proposed method is more efficient than the conventional method when the number of required modes is relatively small. To verify the efficiency of proposed method, two numerical examples are presented.

  • PDF

Novel Starting Method of High Speed Induction Motor for Turbo Blowers (터보 블로워용 고속 유도전동기의 새로운 기동방법)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.253-254
    • /
    • 2016
  • This paper proposes a novel starting method of a high speed induction motor with air bearings for turbo blowers. The friction of air bearings varies according to rotating speed, operating temperature and usage time. Specially, friction torque at initial starting state under low bearing temperature usually results in starting failures of the conventional V/F control method. Therefore, this paper proposes a new starting method, which consists of an initial I/F control mode and smooth transition method to V/F control mode to overcome the starting failure. The experimental results are shown to verify the analysis and the usefulness of the proposed method.

  • PDF

Position Sensorless Starting of BLDC Motor for Compressor (압축기용 BLDC 전동기의 센서리스 기동)

  • Lee, Kwang-Woon;Lee, Joon-Hwan;Choi, Jae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.440-446
    • /
    • 2006
  • The magnitude of output torque in a BLDC Motor depends on torque angle so that the exact initial position of rotor is essentially required for good starting. This paper presents a novel starting control method for smooth starting in a position-sensorless controlled BLDC motor drive for reciprocating compressor of refrigerator. The proposed method starts a BLDC motor using information on the initial position of rotor, determined from current response characteristics, and shows robust starting capability to starting load variations. The effectiveness of the proposed method is verified through experimental results.

Characteristics Analysis for Reactor Starting Method of 3-Phase Induction Motor Considering Saturation (포화성분을 고려한 3상 유도전동기 리액터 기동 특성 분석)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.65-70
    • /
    • 2012
  • Induction motor is the most widely used to obtain the driving force in the industrial site. Induction motor generates a high current at startup. Most of starting currents are often more than five times of rated current. This high starting current can cause problems such as the voltage drop in the system. In order to solve these problems, if the motor capacity is large, generally we use reactor starting method rather than direct on line starting method. When a high startup current passes through reactor, reactor can serve as a nonlinear elements. In this study, we analyzed that the current, torque and power of the induction motor are different from the change of linear and nonlinear components of the reactor magnetic field.

Closed Type Initial Starting Algorithm for PMSM Sensorless Control Using Integrated Speed Angle (폐루프 방식의 속도 적분각을 이용한 PMSM 센서리스 초기기동 알고리즘)

  • Park, Seong-Myeong;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • The cold staring issue of permanent magnet synchronous motors (PMSM) is a chronic problem in the field of PMSM sensorless drives. A traditional starting method, called the I-F method, is widely adopted because of its simple structure. However, when using this method, the pre-defined magnitude and frequency of the starting current should be changed according to the condition of the load and machine inertia. In this paper, a smart and simple algorithm for the cold starting of PMSM is proposed. In the proposed method, an integrated control angle from the estimated electrical rotor speed is used for vector control such as the indirect vector control of the induction machine. Thus, very stable cold starting is performed regardless of the machine load condition or inertia changing.

The Torque Characteristics Analysis of the Single-Phase Switched Reluctance Motor According to the Starting Method (기동 방법에 따른 단상 SRM의 토크 특성 해석)

  • Kim, Jun-Ho;Kim, IL-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.40-46
    • /
    • 2012
  • The single-phase switched reluctance motor(SRM) has only one inductance variation and the positive torque is generated in the restricted section. So, it cannot be started by itself. To solve this problem, many researchers have addressed the several starting method for the single-phase SRM. This paper is focused on the torque characteristics of the single-phase SRM according to starting method. The four major starting method - permanent magnet, saturable stator pole, to grade the rotor, stepped rotor pole - is selected to analyze the torque characteristics. The analysis model of each starting method is designed to changed the pole shape or inserting other material in the basic model. The torque characteristics of each analysis model is obtained by using FEM analysis. The FEM analysis is performed at incremental rotor positions over half inductance cycle in any one pole with 250AT, 500AT, 750AT. The distortion factor of each analysis model is analyzed through the FFT to compare the distortion between basic model and four analysis model.

A Characteristic Study on the Power Factor Compensation Application of High Voltage Induction Motor (고압 유도전동기 역률 보상설비의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Reactor starting method has the advantage of simplicity and closed transition in spite of lower starting torque per kVA. This method allows a smooth start with almost no observable disturbance on transition and is suitable for applications such as centrifugal pumps or fans. Reactive power doesn't contribute to work but needs to sustain the electromagnetic field required for the induction motor to operate. Starting power factor of induction motor is specially lower than running power factor. Power factor application is needed to compensate for the lower power factor of induction motor. This power factor compensation systems is occasionally being hit by the effects of the starting reactor connection position at the starting, stopping of high-voltage induction motor. This paper describes voltage and current stress affected by the installation position of power factor compensation application at the reactor starting method.

Analysis of Power Condenser Voltage Characteristics by Reactor Starting-operation (리액터 기동 운전시 콘덴서 전압 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong;Lee, Dong-Ju;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.619-620
    • /
    • 2008
  • Reactor starting method has the advantage of simplicity and closed transition in spite of lower starting torque per kVA. This method allows a smooth start with almost no observable disturbance on transition and is suitable for applications such as centrifugal pumps or fans. Starting power factor is specially low. Power factor application is needed to compensate for the lower power factor of induction motor. This power factor compensation systems is being hit by the effects of the starting reactor connection position. This paper describes voltage and current stress affected by the installation position of power factor compensation application at the reactor starting method.

  • PDF