• 제목/요약/키워드: Starting Vortex

검색결과 18건 처리시간 0.024초

병진운동하는 평판의 모서리에서의 3차원 와류 구조 가시화 (Three-dimensional vortex structure near a corner of a translating plate)

  • 김대겸
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.21-25
    • /
    • 2015
  • Three-dimensional vortex structures in the corner region of translating normal plates are visualized experimentally with defocusing digital particle image velocimetry. Vortex formation processes for three plates with corner angle $60^{\circ}$, $90^{\circ}$, and $120^{\circ}$ are compared in order to study the effect of corner shape on vortex formation. In all cases, the self-induction of the starting vortex and its interaction with the potential flow induced by the moving plate cause the vortex to change its form dynamically after the plate starts to translate. While the vortex near a corner follows the plate in the low corner angle of $60^{\circ}$, the vortex separates early from the plate and its forward motion becomes slow in the high corner angle of $120^{\circ}$. It is also found that the starting vortex can transport inward at the corner, which depends on the corner angle.

UNSTEADY AERODYNAMICS OF THE STARTING FLOW OF A PLATE OF SMALL ANGLES

  • SUNG-IK SOHN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권4호
    • /
    • pp.232-244
    • /
    • 2023
  • The unsteady dynamics of the starting flow of a flat plate is studied by using a vortex shedding model. The model describes the body and separated vortex from the trailing edge of the plate by vortex sheets, retaining a singularity at the leading edge. The model is applied to simulate the flow of an accelerated plate for small angles of attack. For numerical computations, we take two representative cases of the translational velocity of a plate: impulsive translation and uniform acceleration. The model successfully demonstrates the formation of wakes shed from the plate. The wake behind the plate is stronger for a larger angle of attack. Predictions for the lifting force from the model are in agreement with results of Navier-Stokes simulations.

A MODEL FOR THE PENETRATION RATE OF A BOUSSINESQ STARTING FORCED PLUME

  • LAW ADRIAN WING-KEUNG;AI JIAO JIAN;YU S.C.M
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회(2)
    • /
    • pp.951-951
    • /
    • 2005
  • The characteristics of Boussinesq starting forced plumes were investigated in this study. Two distinct periods in the transient plume penetration were identified, namely the Period of Flow Development (PFD) and Period of Developed Flow (PDF). PFD refers to the time period whereby the penetration rate is governed by the complex vortex dynamics initiated by the exit conditions that can include vortex coalescence, vortex leapfrogging, pinching off of the head vortex from the trailing stem and the eventual reconnection. The pinch-off and reconnection leads to an overshoot of the plume front which is a common observation reported in previous studies. The penetration rate in PDF is more predictable and depends on the continuous feeding of buoyancy and momentum into the head vortex by the trailing buoyant-jet stem. Similarity solutions are developed for PDF to describe the temporal variation of the penetration rate, by incorporating the behavior of an isolated buoyant vortex ring and recent laboratory results on the trailing buoyant jet. In particular, the variations of velocity ratios between the head vortex and trailing buoyant jet are analytically computed. To verify the similarity solutions, experiments were conducted on vertical starting forced plumes using planar laser induced fluorescence (PLIF).

  • PDF

VORTEX 패널법을 이용한 비정상 3차원 날개의 피칭 운동에 관한 연구 (Computational Study of Unsteady Three Dimensional Wing in Pitching Motion Utilizing Linear Vortex Panel Method)

  • 정봉구;조태환
    • 한국항공우주학회지
    • /
    • 제31권6호
    • /
    • pp.1-7
    • /
    • 2003
  • 본 연구에서는 3차원 대칭형 날개의 정상/비정상상대에서의 공기력 특성을 Vortex 패널법을 이용하여 수치적으로 연구했다. 이 프로그램은 날개 표면에 분포된 x, y 방향에 따라 선형적으로 변화는 와(Vortex)를 이용하는 프로그램을 기반으로 하여 3차원 날개 주위의 비압축성 포텐셜 흐름에 적용하였고 박리와 후류의 변형은 고려하지 않았다. NACA Airfoil 자료와 비교한 계산결과는 매우 만족스러운 일치를 보여주었다. 또한 갑작스러운 pitch-up운동과 일정한 각속도로 피칭운동을 하는 비정상 날개에 대해서도 본 방법을 적용하였다. 비정상 상태의 연구에서는 출발와류의 생성과 시간에 따른 위치를 고려함으로서 출발와류가 날개의 공기력 특성에 미치는 영향을 계산하였다. 본 방법은 피칭이나 플래핑, 회전익 해석등의 더 복잡한 경우에도 적용되어질 수 있다.

러쉬톤 교반기의 초기 비정상 유동 특성 (Characteristics of the Starting Flow of a Rushton Turbine Mixer)

  • 박경현;김경천
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1543-1551
    • /
    • 2001
  • The characteristics of starting flow of a six-blade Rushton turbine mixer were investigated by using a cinematic Particle Image Velocimetry technique. The flows were quantified by measurements of velocity fields with a 4 ms time interval for a blade rotational speed of 100 r.p.m, so that the turbine Reynolds number(ND$^2$/ ν) was fixed to 6,960. The radial shedding of the trailing vortices starts from passing four blades after the beginning of rotation. It clearly shows that the vortex pairing phenomena caused by the interactions between trailing cortices firm consequtive blades. The average convection velocity of the radial flow is found to be 28 % of the tip velocity. The starting flow seems to arrive at a steady state after 8 revolutions in this study, which corresponds nearly one circulation through the bulk flow trajectory with the average radial convection velocity.

평판 뒤 전단층에서의 충격파-와동 상호 간섭에 대한 수치적 연구 (Numerical Study on Shock-Vortex Interaction Behind a Flat Plate)

  • 장세명;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.23-28
    • /
    • 1999
  • In this paper we study numerically the shock-vortex interaction in the shear layer generated by moving shock waves above and below a flat plate. The faster normal shock is diffracted at the tip of the flat plate, producing a starting vortex. The slower normal shock below the flat plate arrives soon later to run across the vortex and make interaction. The two shocks are merged together and reflected back at the closed end of the shock tube to impinge on the shear layer developing multiple vortexlets. The computational simulation based on Euler and Navier-Stokes equations shows good prediction.

  • PDF

유한 쐐기에 의한 충격파 산란 현상의 수치적 연구 (Numerical Study on the Shock Wave Scattering Phenomenon Behind a Finite Wedge)

  • 장세명;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.79-84
    • /
    • 1999
  • The shock wave diffracted behind a finite wedge is partially scattered after interacting with a starting vortex originated from the sharp vertex of the wedge. The shock is divided into the accelerated and decelerated shocks. The decelerated shock then interacts with the small vortexlets brought about by the vortex instability, producing weak compression waves. The shock-shock interaction produces Mach stems. Through this successive process, the shock attenuated. In this study, these complicated shock phenomena are computed using Euler equations and compared with experimental results obtained by the authors.

  • PDF

Vortex Tube의 승용 디젤기관 배기가스 온도 분리특성에 관한 연구 (An Experimental Study on Characteristics of Temperature Separation in a Vortex Tube for Diesel Engine Exhaust Gas)

  • 정영철;최두석;임석연;김홍주;류정인
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.93-98
    • /
    • 2010
  • An object of this study is to confirm the opening amount of the throttle valve that is begun the temperature separation of vortex tube for various engine speed and load condition in a common rail diesel engine. The vortex tube located at downstream of the exhaust manifold is a device separating the incoming exhaust gas to hot and cold stream. To find optimum separation efficiency of vortex tube, the opening amount of throttle valve has been investigated for various engine speed and load conditions. Engine speed was found that the influence of engine speed was dominant compared with that of engine load. As engine speed was increased, the throttle opening amount starting temperature separation was reduced.

Numerical Prediction of Rotor Tip-Vortex Roll-Up in Axial Flights by Using a Time-Marching Free-Wake Method

  • Chung, Ki-Hoon;Na, Seon-Uk;Jeon, Wan-Ho;Lee, Duck-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.1-12
    • /
    • 2000
  • The wake geometries of a two-bladed rotor in axial flights using a time-marching free-wake method without a non-physical model of the far wake are calculated. The computed free-wake geometries of AH-1G model rotor in climb flight are compared with the experimental visualization results. The time-marching free-wake method can predict the behavior of the tip vortex and the wake roil-up phenomena with remarkable agreements. Tip vortices shed from the two-bladed rotor can interact with each other significantly. The interaction consists of a turn of the tip vortex from one blade rolling around the tip vortex from the other. Wake expansion of wake geometries in radial direction after the contraction is a result of adjacent tip vortices begging to pair together and spiral about each other. Detailed numerical results show regular pairing phenomenon in the climb flights, the hover at high angle of attack and slow descent flight too. On the contrary, unstable motions of wake are observed numerically in the hover at low angle of attack and fast descent flight. It is because of the inherent wake instability and blade-vortex-interaction rather then the effect of recirculation due to the experimental equipment.

  • PDF

천음속 회전익에서의 누설유동 (Tip Leakage Flow on the Transonic Compressor Rotor)

  • 박준영;정희택;백제현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.244-249
    • /
    • 2002
  • It is known that tip clearance flows reduce the pressure rin, flow range and efficiency of the turbomachinery. So, the clear understanding about flow fields in the tip region is needed to efficiently design the turbomachinery. The Navier-Stokes code with the proper treatment of the boundary conditions has been developed to analyze the three-dimensional steady viscous flow fields in the transonic rotating blades and a numerical study has been conducted to investigate the detail flow physics in the tip region of transonic rotor, NASA Rotor 67. The computational results in the tip region of transonic rotors show the leakage vortices, leakage flow from pressure side to suction side and their interaction with a shock Depending on the operating conditions, the position of shock-wave on the blade surface are v8y different close to the blade tip of the transonic compressor rotor. The shock-wave position dose to the blade tip had the dose relationship with the starting position of leakage vortex and the direction of leakage flow.

  • PDF