• 제목/요약/키워드: Starting Flow

검색결과 337건 처리시간 0.023초

이차목을 갖는 초음속 이젝터 작동압력에 대한 연구 (Study of Starting Pressure of a Supersonic Ejector with a Second-Throat)

  • 진정근;권세진;김세훈
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.934-939
    • /
    • 2005
  • Starting pressure of a supersonic ejector with a second-throat was investigated. In case of mixing chamber length longer than a critical length, starting pressure is in proportion to length of the mixing chamber. In this study, we assumed that the ejector starts when the primary supersonic flow reaches inlet of the second-throat and the distance of the supersonic flow traveling can be expressed by multiplying an empirical factor to the first diamond shock length of overexpanded flow. To calculate the overexpanded supersonic flow, a mixing model was employed to compute secondary flow pressure and the result was applied to back pressure condition of overexpanded flow calculation. In the result, for three cases of primary nozzle area ratio, we could get accurate model of predicting the starting pressure by selecting a suitable empirical factors around 3.

러쉬톤 교반기의 초기 비정상 유동 특성 (Characteristics of the Starting Flow of a Rushton Turbine Mixer)

  • 박경현;김경천
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1543-1551
    • /
    • 2001
  • The characteristics of starting flow of a six-blade Rushton turbine mixer were investigated by using a cinematic Particle Image Velocimetry technique. The flows were quantified by measurements of velocity fields with a 4 ms time interval for a blade rotational speed of 100 r.p.m, so that the turbine Reynolds number(ND$^2$/ ν) was fixed to 6,960. The radial shedding of the trailing vortices starts from passing four blades after the beginning of rotation. It clearly shows that the vortex pairing phenomena caused by the interactions between trailing cortices firm consequtive blades. The average convection velocity of the radial flow is found to be 28 % of the tip velocity. The starting flow seems to arrive at a steady state after 8 revolutions in this study, which corresponds nearly one circulation through the bulk flow trajectory with the average radial convection velocity.

리어가이더 시작각 변화가 횡류홴 성능에 미치는 영향 (Effects of Starting Angles of a Rearguider on the Performance of a Cross-Flow Fan)

  • 김형섭;김동원;윤태석;박성관;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1981-1986
    • /
    • 2004
  • A cross-flow fan relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there exists a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, it is difficult to analyze the reciprocal relations of the cross-flow fan because each parameter is independent. Numerical analyses are conducted with different starting angles of the rearguider. Two-dimensional, unsteady governing equations are solved, using FVM, PISO algorithm, sliding grid system and ${\kappa}-{\varepsilon}$ standard turbulence model.

  • PDF

The Starting Characteristics of the Steady Ejector-Diffuser System

  • Gopalapillai, Rajesh;Kim, Heuy-Dong;Matsuo, Shigeru;Setoguchi, Toshiaki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.680-685
    • /
    • 2008
  • The ejector is a simple device which can transport a low-pressure secondary flow by using a high-pressure primary flow. In general, it consists of a primary driving nozzle, a mixing section, and a diffuser. The ejector system entrains the secondary flow through a shear action generated by the primary jet. Until now, a large number of researches have been made to design and evaluate the ejector systems, where it is assumed that the ejector system has an infinite secondary chamber which can supply mass infinitely. However, in almost all of the practical applications, the ejector system has a finite secondary chamber implying steady flow can be possible only after the flow inside ejector has reached an equilibrium state after the starting process. To the authors' best knowledge, there are no reports on the starting characteristics of the ejector systems and none of the works to date discloses the detailed flow process until the secondary chamber flow reaches an equilibrium state. The objective of the present study is to investigate the starting process of an ejector-diffuser system. The present study is also planned to identify the operating range of ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the one and only condition in which an infinite mass entrainment is possible is the generation of a recirculation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point.

  • PDF

선박용 중형디젤엔진 공기시동모터의 유동특성에 관한 수치해석 (Numerical Analysis on Flow Characteristics of Air Starting Motor for Marine Medium-Speed Diesel Engine)

  • 양수영;김태훈;이연원;도덕희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.545-552
    • /
    • 2009
  • The marine medium-speed diesel engines are operated by two methods; one is the electric motors, and the other air starting motors. Even though air starting motor is dependent of the engine types and sizes, it has been widely used in this area due to its simplicity, convenience and reliability. However most of them are currently imported from overseas due to the lack of the cutting-edge technology in terms of design and manufacturing. Therefore, from the point of this view, the air starting motor needs to be produced by our own techniques. The purpose of this paper is to give the designing parameters in order to make a proper "Air Starting Motor" using CFD. The aerodynamic approaches were given to understand the internal flow characteristics of the air starting motor. In addition, we have carried out the effects of tip clearance. In the calculations the tip clearance of air starting motor has been varied between 0% and 5.7% of blade span.

UNSTEADY AERODYNAMICS OF THE STARTING FLOW OF A PLATE OF SMALL ANGLES

  • SUNG-IK SOHN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권4호
    • /
    • pp.232-244
    • /
    • 2023
  • The unsteady dynamics of the starting flow of a flat plate is studied by using a vortex shedding model. The model describes the body and separated vortex from the trailing edge of the plate by vortex sheets, retaining a singularity at the leading edge. The model is applied to simulate the flow of an accelerated plate for small angles of attack. For numerical computations, we take two representative cases of the translational velocity of a plate: impulsive translation and uniform acceleration. The model successfully demonstrates the formation of wakes shed from the plate. The wake behind the plate is stronger for a larger angle of attack. Predictions for the lifting force from the model are in agreement with results of Navier-Stokes simulations.

Center Body 위치와 Cone 각도에 따른 Center Body Diffuser의 유동특성 및 시동에 대한 수치적 연구 (A Numerical Study of the Flow Characteristics and Starting Pressure of a Center Body Diffuser According to the Center Body Position and Cone Angle)

  • 이성훈;박진;김홍집
    • 한국추진공학회지
    • /
    • 제23권5호
    • /
    • pp.10-18
    • /
    • 2019
  • Center Body Diffuser (CBD)의 Center Body (CB) 형상에 의한 유동 특성 및 시동압력을 해석하였다. CB 위치와 Cone 각도의 변경을 통해 초음속 유동 특성 및 시동압력을 비교하였다. CB 위치를 변수로 하여 Diffuser 해석한 결과, 유동의 모멘텀의 형성에 따라 강한 경사충격파의 발생위치가 달라지는 것을 확인하였다. 또한 경사충격파가 발생할 경우, 초음속 유동의 방향이 디퓨저 벽면으로 유도되는 것을 확인하였다. Cone 각도 변화에 따른 경사충격파의 각도 차이로 인하여, CBD의 시동압력이 영향을 받는 것을 확인하였다.

축소 팽창 디퓨저가 장착된 초음속 이젝터의 시동 특성 (The Starting Behaviour of a Supersonic Ejector Equipped with a Converging-Diverging Diffuser)

  • 박근홍;김세훈;진정근;권세진
    • 한국추진공학회지
    • /
    • 제9권2호
    • /
    • pp.70-77
    • /
    • 2005
  • 축소-팽창 디퓨저가 장착된 초음속 이젝터를 제작하여, 다양한 위치에서의 측정된 압력으로 부유동의 초음속 시동조건을 찾아내었다. 우선 부유동 흡입구의 크기의 영향을 알아내기 위하여 다양한 흡입구 직경으로 실험하였으며, 부유동의 초음속 시동은 흡입구 직경과 축소-팽창 디퓨저 직경의 비, d/D가 0.306 미만인 경우에만 일어났다. 이보다 큰 d/D에서는, 아음속 시동이 먼저 시작되고, 흡입구를 막으면서 주유동의 유입이 전 유동장을 채우게 되어 수직 충격파를 축소-팽창 디퓨저의 하류로 내려보내게 된다 이러한 상황에서 다시 흡입구를 열어도 히스테리시스의 영향으로 초음속 시동이 유지된다.

Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

  • Le, Tuyen Quang;Lee, Kwang-Soo;Park, Jin-Soon;Ko, Jin Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.257-268
    • /
    • 2014
  • In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flow-driven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

The Ascendancy of Grain Configuration on the Starting Transient of Solid Rockets

  • V.R. Sanal Kumar;Kim, Heuy-Dong;B.N. Raghunandan;Toshiaki Setoguchl
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.550-559
    • /
    • 2004
  • Theoretical studies have been carried out to examine the influence of the grain geometry-dependent driving forces, which control the internal flow pattern of solid rockets. Numerical studies have been executed with the help of a two-dimensional code. This code solves standard k-omega turbulence equations using the coupled second order implicit unsteady formulation. It has been concluded that the grain port divergence angles have significant leverage on the formation of recirculation bubbles leading for pressure oscillations, flow separation and reattachment. In solid rockets flow reattachment will favour secondary ignition and that will add to the complexity of the starting transient prediction.

  • PDF