• Title/Summary/Keyword: Stars: supernovae

Search Result 52, Processing Time 0.023 seconds

LOW-RESOLUTION SPECTROSCOPIC STUDIES OF GLOBULAR CLUSTERS WITH MULTIPLE POPULATIONS

  • LIM, DONGWOOK;HAN, SANG-IL;ROH, DONG-GOO;LEE, YOUNG-WOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.255-259
    • /
    • 2015
  • Recent narrow-band Ca photometry discovered two distinct red giant branch (RGB) populations in some massive globular clusters (GCs) including M22, NGC 1851, and NGC 288. In order to investigate the differences in light/heavy elements abundances between the two subpopulations, we have performed low-resolution spectroscopy for stars on the two RGBs in these GCs. We find a significant difference (more than $4{\sigma}$) in calcium abundance from the spectroscopic HK' index for both M22 and NGC 1851. We also find a more than $8{\sigma}$ difference in CN band strength between the Ca-strong and Ca-weak subpopulations. For NGC 288, however, we detect the presence of a large difference only in the CN strength. The calcium abundances of the two subpopulations in this GC are identical within errors. We also find interesting differences in CN-CH relations among these GCs. While CN and CH indices are correlated in M22, they show an anti-correlation in NGC 288. However, NGC 1851 shows no difference in CH between two groups of stars having different CN strengths. The CN bimodality in these GCs could be explained by pollution from intermediate-mass asymptotic giant branch stars and/or fast-rotating massive stars. For the presence or absence of calcium bimodality and the differences in CN-CH relations, we suggest these would be best explained by how strongly type II supernovae enrichment has contributed to the chemical evolutions of these GCs.

Current Status of Intensive Monitoring Survey of Nearby Galaxies and Core-Collapse Supernovae Observational Research

  • Kim, Sophia;Im, Myungshin;Choi, Changsu;Im, Gu;Paek, Gregory S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.80.1-80.1
    • /
    • 2021
  • Intensive Monitoring Survey of Nearby Galaxies (IMSNG) is a program monitoring nearby galaxies with a high cadence within a day. The main goal of the project is to constrain the SNe explosion mechanism and properties of their progenitors by catching the early lights from the shock-heated cooling emission. The observation campaign began in 2014 with two 1-m class telescopes in the northern hemisphere. Now more than ten telescopes are monitoring galaxies with 60 IMSNG targets, which have a high probability of supernova explosion every night all around the world. Since the project started, the following observations have been carried out on 14 SNe Ia(including -pec), 27 core-collapse supernovae (CCSNe), and around 40 transients in other types. In this poster, we present the current status of IMSNG SNe data first and then focus more on the CCSNe. CCSNe are the explosion of massive stars, more massive than eight times of the Sun. They have been studied for more than a half decades but still have key questions to be solved, such as distinct types, the characteristics driving their diversity, and so on. Here, we show our ongoing studies of CCSNe in IMSNG, focusing on their usefulness as distance indicators and properties of early light curves.

  • PDF

Formation of globular clusters in cosmological radiation hydrodynamic simulation

  • Yi, Sukyoung K.;Kimm, Taysun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.36.1-36.1
    • /
    • 2016
  • This is a presentation of the paper published as Kimm et al. 2016, ApJ, 823, 52. We investigate the formation of metal-poor globular clusters (GCs) at the center of two dark matter halos with $Mhalo{\sim}4{\times}107Msun$ at z>10 using cosmological radiation-hydrodynamics simulations. We find that very compact (${\leq}1$ pc) and massive (${\sim}6{\times}105Msun$) clusters form rapidly when pristine gas collapses isothermally with the aid of efficient $Ly{\alpha}$ emission during the transition from molecular-cooling halos to atomic-cooling halos. Because the local free-fall time of dense star-forming gas is very short (${\ll}1Myr$), a large fraction of the collapsed gas is turned into stars before stellar feedback processes blow out the gas and shut down star formation. Although the early stage of star formation is limited to a small region of the central star-forming disk, we find that the disk quickly fragments due to metal enrichment from supernovae. Sub-clusters formed in the fragmented clouds eventually merge with the main cluster at the center. The simulated clusters closely resemble the local GCs in mass and size but show a metallicity spread that is much wider than found in the local GCs. We discuss a role of pre-enrichment by Pop III and II stars as a potential solution to the latter issue. Although not without shortcomings, it is encouraging that a naive blind (not tuned) cosmological simulation presents a possible channel for the formation of at least some massive GCs.

  • PDF

The Presence of Two Distinct Red Giant Branches in the Globular Cluster NGC 1851

  • Han, Sang-Il;Lee, Young-Wook;Joo, Seok-Joo;Sohn, Sangmo Tony;Yoon, Suk-Jin;Kim, Hak-Sub;Lee, Jae-Woo
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.30.2-30.2
    • /
    • 2009
  • There is a growing body of evidence for the presence of multiple stellar populations in some globular clusters, including NGC 1851. For most of these peculiar globular clusters, however, the evidence for the multiple red giant-branches (RGBs) having different heavy elemental abundances as observed in $\omega$ Centauri is hitherto lacking, although spreads in some lighter elements are reported. It is therefore not clear whether they also share the suggested dwarf galaxy origin of $\omega$ Cen or not. Here we show from the CTIO 4m UVI photometry of the globular cluster NGC 1851 that its RGB is clearly split into two in the U - I color. The two distinct RGB populations are also clearly separated in the abundance of heavy elements as traced by Calcium, suggesting that the type II supernovae enrichment is also responsible, in addition to the pollutions of lighter elements by intermediate mass asymptotic giant branch stars or fast-rotating massive stars. The RGB split, however, is not shown in the V - I color, as indicated by previous observations. Our stellar population models show that this and the presence of bimodal horizontal-branch distribution in NGC 1851 can be naturally reproduced if the metal-rich second generation stars are also enhanced in helium.

  • PDF

STARDUSTS IN SUPERNOVA REMNANTS SEEN BY AKARI

  • Koo, Bon-Chul
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.225-230
    • /
    • 2012
  • Supernovae (SN) and supernova remnants (SNRs) play a major role in the life-cycle of interstellar dusts. Fast shock waves generated by SN explosions sweep out the interstellar space destroying dust grains and modifying their physical and chemical properties. The dense, cooling SN ejecta, on the other hand, provide an environment for dusts to condense. Recent space-infrared telescopes have revealed the hidden universe related to these fascinating microscopic processes. In this paper, I introduce the results on stardusts in young core-collapse supernova remnants obtained by AKARI. The AKARI results show diverse infrared characteristics of stardusts associated with SNRs, implying diverse physical/chemical stellar structures and circumstellar environments at the time of explosion.

Globular clusters with multiple red giant branches: Narrow-band calcium photometry

  • Han, Sang-Il;Lee, Young-Wook;Joo, Seok-Joo;Lim, Dongwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.74.1-74.1
    • /
    • 2013
  • We have performed new narrow-band calcium photometry for Milky Way globular clusters (GCs) and detected multiple red giant branches (RGBs) in some massive GCs. Our new calcium filter was designed to avoid the CN contamination below $3883{\AA}$ and to measure only Ca II H&K lines. The fact that we are detecting multiple RGBs from the new filter is suggesting that they are indeed different in calcium abundance, which can only be produced by supernovae (SNe). Therefore, the presence of the multiple RGBs for the peculiar GCs in the calcium photometry is best understood if the later generation of stars are enhanced in some SNe products. In this talk, we will present our progress in the calcium photometry for the peculiar GCs showing the multiple RGBs.

  • PDF

On the origin of the extended horizontal branch and the Sandage period-shift effect in the two metal-poor globular clusters NGC2419 and M15

  • Jang, Sohee;Joo, Seok-Joo;Na, Chongsam;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.62.2-62.2
    • /
    • 2013
  • Recent spectroscopic observations have provided evidence for complex chemical evolution by supernovae and/or asymptotic giant branch (AGB) stars in the two metal-poor globular clusters (GCs) NGC2419 and M15. In particular, the horizontal branches (HBs) of these metal-poor GCs are very extended in the Hertzsprung-Russell diagram. The origin of these peculiar features, as well as that for the Sandage period-shift effect observed in these clusters, are yet to be understood. Here we show, by constructing population models including the Nitrogen enhanced subpopulation, that the second generation populations in these clusters would be enhanced not only in Helium, but also in Nitrogen. This working hypothesis can simultaneously explain the observed extended feature on the HB and the period-shift of RR Lyrae variables.

  • PDF

Photometry Transformation from RGB Bayer Filter System to Johnson-Cousins BVR Filter System

  • Park, Woojin;Pak, Soojong;Shim, Hyunjin;Le, Huynh Anh N.;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.104.2-104.2
    • /
    • 2014
  • The RGB Bayer filter system consists of mosaic R, G, and B filters on the grid of photo sensors with which typical commercial DSLR (Digital Single Lens Reflex) cameras and CCD/CMOS cameras are taken. Many unique astronomical data taken with RGB Bayer filter systems are available, including transient objects, e.g., supernovae, variable stars, and solar system bodies. The utilization of such data in scientific research strongly requires reliable photometry transformation methods. In this work, we develop a series of formulae to derive magnitudes in the Johnson-Cousins BVR filter system from those in the RGB Bayer filter system.

  • PDF

SOME CURRENT ISSUES IN GALAXY FORMATION

  • Silk, Joseph
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.3
    • /
    • pp.53-58
    • /
    • 2010
  • The origin of the galaxies represents an important focus of current cosmological research, both observational and theoretical. Its resolution involves a comprehensive understanding of star formation and evolution, galaxy dynamics, supermassive black holes, and the cosmology of the very early universe. In this paper, I will review our current understanding of galaxy formation and review some of the challenges that lie ahead. Specific issues that I address include the galaxy luminosity function, feedback by supernovae and by AGN, and downsizing. I argue that current evidence favours two distinct modes of star formation in the early universe, in order to account for the origin of disk and massive spheroidal galaxies. However perhaps the most urgent need is for a robust theory of star formation.

Supernovae Follow-up Observations and the Korean Neutrino Telescope

  • Kim, Sang Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2017
  • Massive stars (${\geq}8M_{\odot}$) are believed to experience core-collapse and finish their lives as supernova (SN) explosions. Astronomers operating the current SN survey facilities try to catch the first moments of SN explosions. Since neutrinos are emitted first from the SNe before the electromagnetic lights, any neutrino detections from more than two sites within around 10 seconds could be useful alert for early follow-up observations, especially for optical SN follow-up telescopes. In this talk, I will brief the current SN follow-up observation projects, what they want to find out and contribute to SN sciences. Focus will be on the early detection and early sciences on SNe, which is what the Korean Neutrino Telescope can contribute most importantly.

  • PDF