• Title/Summary/Keyword: Starch value

Search Result 595, Processing Time 0.022 seconds

Inheritence, linkage and Possible Use of Fractured Starch Mutant in Barley (Hordeum Vulga L.)

  • Chung, Tae-Young
    • Journal of Plant Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.151-157
    • /
    • 2001
  • In order to breed barley lines with reduced viscosity of wort, a fractured starch mutant of naked barley cultivar, Nubet, was obtained from the M2 seeds mutated by the diethyl sulfate treatment. Seeds of this fractured starch mutant were opaque and the endosperm consists of angular, irregular and fractured starch. The mutant was caused by single recessive mutation and assigned by the symbol fra. The gene was located on chromosome 4, distal in long arm by linkage recombinations using translocation homozygote lethal test set. The linkage value between the fractured starch mutant and 72-4a, 72-4d were 26.0$\pm$4.9, 34.2$\pm$3.1 percent respectively. In addition to the reduced seed size, fewer kernels per spike and higher tillering ability, lower $\beta$-glucan viscosity and higher lysine content of the grain were associated with this mutant. $\beta$-glucan viscosity of the Nubet grains increased from 3 weeks after anthesis to matury and most of the viscose substances appeared to be stored in the middle of the endosperm tissue. Since the mutant grains showed better milling property as compared to Nubet, it can be used as breeding resources to develope new barley cultivars for maltins and milling purpose.

  • PDF

Physicochemical Properties and Gel-forming Properties of corn & Red bean crude Starches (옥수수와 팥 조전분의 이화학적 특성 및 겔 형성)

  • 노정해;이혜수
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1988
  • The physicochemical properties and gel-forming properties of corn & red bean crude starches were investigated. The results were as follows: 1. The shape of corn crude starch granule was polygonal and the mean value of minor axis and major axis were $11.5\mu\textrm{m}$ and $14.9\mu\textrm{m}$, respectively. In the meantime, the shape of red bean crude starch granule was oval and the mean value of minor axis and major axis were $22.3\mu\textrm{m}$ and $31.4\mu\textrm{m}$. 2. Amylose content of corn and red bean refined starch were 16.52 and 43.61% respectively. 3. Blue value of corn and red bean crude starch were 0.099 and 0.842, respectively. 4. Amylose of corn had molecular weight of 107,000 and degree of polymerization of 660. Amylopectin had degree of branching of 6.9 per 100 glucose units and glucose units of 14.6 persegment of amylopectin. Amylose of red bean had molecular weight of 118,000 and amylopectin had degree of branching of 5.2. 5. Water binding capacities of corn and red bean starch were 238.5 and 284.8. 6. Both swelling powers of corn and red bean starch were increased rapidly from $70^{\circ}C$ to $90^{\circ}C$. 7, Gelatinization of corn and red bean were 75.6 and $61.8^{\circ}C$. 8. Brabender hot-paste viscosities of corn at 6% and 8% showed the similar amylogrm patterns with peak viscosity. And red bean had no peak viscosity. 9. The difference of sensory characteristics for ‘Mook’ and kidney bean & red bean starch gels was significant.

  • PDF

Quality Characteristics of Frozen Stored Mungbean Starch Gels Added with Sucrose Fatty Acid Ester

  • Choi, Eun-Jung;Oh, Myung-Suk
    • Food Quality and Culture
    • /
    • v.3 no.2
    • /
    • pp.53-58
    • /
    • 2009
  • This study was conducted to investigate the quality characteristics of frozen stored mungbean starch gels added with sucrose fatty acid ester (SE). The study showed a delay of gelatinization of mungbean starch by SE addition through the measurements conducted by using Rapid Visco Analyzer (RVA) and Differential Scanning Calorimeter (DSC). In the color of SE added frozen stored gels, lightness (L) and yellowness (b) values were increased compared to those of values measured from freshly prepared gel, whereas redness (a) value was decreased. The addition of 1% SE on mungbean starch gel prevented the color change during frozen storage. Rupture stress and rupture energy of frozen stored gel was higher than those of freshly prepared gel, whereas rupture strain of frozen stored gel was lower than that of freshly prepared gel. The addition of 1% SE on mungbean starch gel prevented the change of rupture characteristics during frozen storage. Texture profile analysis(TPA) characteristics revealed a significant change of the gel texture during frozen storage by showing an increase of hardness of the frozen stored gels compared to the freshly prepared gels with newly discovered fracturability, which resulted to show a large difference of gel texture by showing the disappearance of adhesiveness and large reduction of cohesivenes. The addition of 1% SE on mungbean starch gel prevented the change of TPA characteristics during frozen storage. Scanning electron micrographs showed that network structure of frozen stored gel was more rough than that of freshly prepared gel, and the addition of 1% SE on mungbean starch gel could suppress the breakdown of network structure. Thus the addition of 1.0% SE on mungbean starch gel was appropriate method for remaining gel characteristics during frozen storage.

Physicochemical Properties of Freeze-dried Corn Starch Sponge Matrix (동결 건조된 옥수수 전분 스펀지 매트릭스의 이화학적 특성)

  • Han, Kyung-Hoon;Kim, Doh-Hee;Song, Kwan-Yong;Lee, Kye-Heui;Yoon, Taek-Joon;Yang, Sung-Bum;Lee, Seog-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.419-427
    • /
    • 2010
  • The focus of the current study was to investigate the physicochemical properties of a corn starch-sponge matrix prepared at a low concentration below gel forming by freeze-drying. The effect of variables(starch concentration, heating temperature, and heating hold time) on the physicochemical properties of the samples was analyzed by response-surface methodology. Regression models on the properties of samples such as hardness, springiness, and water solubility index(WSI) showed high correlation coefficients(r>0.95) and significant F values, but regression models for the other properties(swelling power, apparent viscosity, reducing sugar content, and digestibility) showed them to have relatively low significance. Sample hardness of sample showed the highest value at condition of $90^{\circ}C$ and 5%, whereas springiness was at a maximum at $130^{\circ}C$ and 5%. Also, at 1% of starch concentration, mechanical properties were greatly decreased as the relative humidity increased, compared with the 3% and 5%, especially in the hardness of samples. The WSI showed an increasing trend with heating temperature regardless of starch concentration. Overall, the physicochemical properties of freeze-dried corn starch-sponge matrix were influenced much more by starch concentration and heating temperature than by heating hold time. The results of this study show that the basic properties of freeze-dried corn starch-sponge matrix can be used for the specific food applications or as a functional material for its stability.

A Study on the Physicochemical Properties of Buckwheat Starches (메밀 전분의 이화학적 특성에 관한 연구)

  • Lee, Mi-Sook;Sohn, Kyung-Hee
    • Korean journal of food and cookery science
    • /
    • v.8 no.3
    • /
    • pp.291-296
    • /
    • 1992
  • The physicochernical properties of Korean buckwheat starches were investigated. The results were as follows; 1. Water binding capacity of kangwon hull buckwheat starch was 106.55% and that of Kangwon rice buckwheat was 99.35%. 2. The pattern of change in swelling power of hull buckwheat starch for increasing temperature started to increase at 60$^{\circ}C$ and increased rapidly from 80$^{\circ}C$, and that of rice buckwheat increased slowly from 60$^{\circ}C$ to 90$^{\circ}C$. 3. The ranges of gelatinization temp. of hull buckwheat and rice buckwheat starches were 70~75$^{\circ}C$ and 75~85$^{\circ}C$, respectively. 4. The blue value of hull buckwheat starch and rice buckwheat starch were 6.25 and 0.62, respectively. 5. The alkali number of hull buckwheat starch and rice buckwheat starch were 1.28 and 3.68 respectively. 6. The amylose content of hull buckwheat and rice buckwheat starch were 32.26% and 38.09%. 7. Periodate oxidation of hull buckwheat starch resulted that amylose had me average molecular weight of 103, 004, degree of polymerizatlon of 572 and amylopectin had me degree of branching of 7.64, glucose unit per segment of 13.09, and periodate oxidation of rice buck wheat starch resulted mat amylose had me average molecular weight of 125, 654, degree of polymerization of 698 and amylopectin had degree of branching of 6.59, glucose unit per segment of 15.16.

  • PDF

Quality Characteristics of Omija Jelly Prepared with Various Starches by the Addition of Oil and Chitosan (유지 및 키토산 첨가가 여러 가지 전분으로 제조한 오미자 젤리의 품질 특성에 미치는 영향)

  • Lyu, Hyun-Ju;Oh Myung Suk
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.877-887
    • /
    • 2005
  • This study determined the effects of soybean oil$2\%$) and chitosan($1\%$) on the quality characteristics of Omija Jelly made of various starches (mungbean starch, cowpea starch and corn starch). RVA(Rapid Visco Analyzer) viscosity was measured for starches suspended in Omija aextract with $2\%$ soybean oil and $1\%$ chitosan. The color value, syneresis, texture(rupture test and TPA test) and sensory properties of the samples were measured. Gelatinization of cowpea starch was expedited by adding soybean oil and chitosan. Otherwise, gelatinization of mungbean starch and com starch was retarded by adding chitosan. The lightness(L) and the syneresis of Omija Jelly with soybean oil and chitosan were decreased, indicating the increased transparency and stability of Omija Jelly. Rupture stress and rupture energy of Omija Jelly were decreased by adding soybean oil. Rupture stress was increased and rupture energy was decreased by adding chitosan. The addition of soybean oil improved texture of Omija Jelly, indicating that the springiness, cohesiveness and chewiness of Omija Jelly were increased and adhesiveness was decreased. By adding chitosan, the springiness and hardness of Omija Jelly were increased and the cohesiveness and adhesiveness were decreased. The overall acceptability of Omija Jelly made of $6%$ or $7\%$ cowpea starch and com starch was increased by adding soybean oil and chitosan, but the quality characteristics of Omija Jelly made of mungbean starch were not influenced by additives such as soybean oil and chitosan.

A Study on the Tannin Components and Physical Properties of Acorn Starch - Gallic Acid Contents and Viscosity - (도토리 전분(澱粉)의 Tannin 성분(成分)과 물리적(物理的) 특성(特性)에 관(關)한 연구(硏究) - Gallic Acid 함양(含量)과 점도특성(粘度特性) -)

  • Park, Jae-Young;Koo, Sung-Ja
    • Journal of Nutrition and Health
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 1984
  • Tannin from acorn was identified by TLC and gallic acid in the tannin was determined by HPLC. The tannin extracted with methanol-butanol was not dissolved in ethanol, methanol for HPLC and water, while the tannin extracted with acetone-ethylacetate was so pure that it could be used for HPLC-running. The gallic acid showed a Rf -value of 0.39, the digallic acid of 0.21, the trigallic acid of 0.09, and the gallotannin of 0.00 respectively. The content of gallic acid in the tannin from acorn powder was 3.04%, from acorn starch, 0.90%, and from acorn starch gels, 0.64-0.86% respectively. The effect of tannin contents on the viscosity of acorn atarch was also studied. The maximum and cooling viscosity of the starch were decreased as the contents of tannin increased.

  • PDF

Effects of Transglutaminase on the Physical Properties of Resistant Starch-added Wheat Flour Doughs and Baguettes

  • An, Young-Hyun;Gang, Dong-Oh;Shin, Mal-Shick
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.608-613
    • /
    • 2005
  • Effects of transglutaminase (TG) on physicochemical properties of dough prepared with 20% resistant starch (RS)-added wheat flour were investigated. RS levels of wheat flours added with native wheat starch (NS), Hi-maize (RS2), retrograded (RS3), and cross-linked (RS4) wheat starches were 2.97, 11.88, 5.79, and 9.09%, respectively. Peak viscosity of NS-added flour was higher, whereas setback was lower, than those added with other resistant starches. TG had no effect on pasting behaviors of RS-added flours. Water absorption ranged from 66.5 to 79.0%, and development time increased with RS addition. TG increased tensile strength of dough after fermentation and bread volume, due to well-developed gluten network resulting from cross-linking facilitated by TG Addition of TG decreased hardness of baguettes, with RS2-added baguette showing lowest value. These results indicate addition of TG enhanced eating quality of RS-added breads.

Textural Properties of Gluten-free Rice Pasta Prepared Employing Various Starches (전분을 첨가한 글루텐 프리 쌀 파스타의 텍스처 특성)

  • Jung, Jin Hyuck;Yoon, Hye Hyun
    • Korean journal of food and cookery science
    • /
    • v.33 no.1
    • /
    • pp.28-36
    • /
    • 2017
  • Purpose: This study was conducted to understand the factors that affect the texture of gluten-free rice pasta prepared buckwheat, mung bean, and acorn starches and to compare textural properties of samples 100% semolina. Methods: The moisture content, weight and water absorption test investigated and texture profile analysis measured by texture analyzer. Results: 100% semolina sample's value was lower than gluten-free rice pasta moisture content, weight and water absorption test. moisture content weight was in pasta with mung bean starchin pasta with buckwheat starch. Texture profile analysis showed that increasing amount of buckwheat, mung bean, and acorn starches increased hardness, chewiness, cohesiveness and springiness, and decreased adhesiveness of gluten free rice pasta. Conclusion: This study suggested that adding buckwheat, mungbean and acorn starches could improve texture properties of gluten-free rice pasta.

Inheritance of Waxy and Fractured Starch Endosperm of Barley (보리 찰성 및 분장성 전분의 유전)

  • Nam, Jung-Hyun;Lee, Eun-Sup;Chung, Tae-Young;Park, Moon-Woong;Cho, Chang-Hwan;Shim, Jae-Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.1
    • /
    • pp.16-18
    • /
    • 1986
  • This experiment was conducted to know the genetic nature of waxy and fractured starch endosperm genes in 1983. F$_2$ seeds involve simple recessive gene(1:3) for the waxy and fractured starch endosperm genes, respectively. Also, association between waxy and fractured starch endosperm have shown to be segregated as expected to fit in the ratio 9:3:3:1 respectively of normal-nonwaxy: fractured-nonwaxy: normal-waxy: fractured-waxy showing the acceptable value of X$^2$ test of independence.

  • PDF