• Title/Summary/Keyword: Star Tracker Assembly

Search Result 3, Processing Time 0.019 seconds

Verification of the Star Tracker Sun Exclusion Angle of GEO-KOMPSAT-2A Through In-Orbit Operation (천리안 2A호 별추적기 태양 차폐각 궤도상 운영 검증)

  • Kang, Woo-Yong;Baek, Kwangyul;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.243-249
    • /
    • 2021
  • The star tracker detects microscopic star light in space and compares it with a stored list of stars to calculate the satellite's position in the inertial coordinate system. If other light, such as the sun or the earth, enters the optical head, the star cannot be recognized and the star tracker cannot be operated. In particular, strong light such as the sun affects not only operation but also the performance of the star tracker. The sun exclusion angle of the star tracker is one of the important factors determining the performance of the star tracker. This paper performs the verification of the star tracker's sun exclusion angle. In order to verify the sun exclusion angle, we predict the sun exclusion time of the star tracker and compare it to the actual sun exclusion time of the GEO-KOMPSAT-2A star tracker. In addition, the performance of the star tracker is analyzed for normal operations against the sun exclusion in the optical head. It shows that the actual sun exclusion is maintained under the range of 26 degrees, the performance requirement of the star tracker, and the star tracker operates normally in spite of the sun exclusion.

Analysis of Magnetic Dipole Moment for a 300-W Solar-Cell Array

  • Shin, Goo-Hwan;Kim, Dong-Guk;Kwon, Se-Jin;Lee, Hu-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.181-186
    • /
    • 2019
  • The attitude information of spacecraft can be obtained by the sensors attached to it using a star tracker, three-axis magnetometer, three-axis gyroscope, and a global positioning signal receiver. By using these sensors, the spacecraft can be maneuvered by actuators that generate torques. In particular, electromagnetic-torque bars can be used for attitude control and as a momentum-canceling instrument. The spacecraft momentum can be created by the current through the electrical circuits and coils. Thus, the current around the electromagnetic-torque bars is a critical factor for precisely controlling the spacecraft. In connection with these concerns, a solar-cell array can be considered to prevent generation of a magnetic dipole moment because the solar-cell array can introduce a large amount of current through the electrical wires. The maximum value of a magnetic dipole moment that cannot affect precise control is $0.25A{\cdot}m^2$, which takes into account the current that flows through the reaction-wheel assembly and the magnetic-torque current. In this study, we designed a 300-W solar cell array and presented an optimal wire-routing method to minimize the magnetic dipole moment for space applications. We verified our proposed method by simulation.

Study on the Allocation Method of Sun Sensor Assembly for GEO-KOMPSAT2 (정지궤도복합위성 태양센서 장착방법에 관한 연구)

  • Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.551-556
    • /
    • 2018
  • A lot of hardwares are allocated on the satellite to perform the attitude control. Sun sensor is very important hardware to acquire the initial attitude after separation from launcher and to maintain the safety attitude from the satellite anomaly operation. So the allocation of the sun sensor to acquire the field of view and the attitude control design using it, are critical work in the beginning of development. Number of Sun sensor for GEO-KOMPSAT2 is reduced with respect to COMS due to star tracker usage. The additional sun sensor using COMS heritage is considered. In this paper, it is described the analysis and the results on the method for the safety improvement which is to enlarge the field of view and to consider the harness connection of P/R-side of the sun sensor.