• Title/Summary/Keyword: Star Recognition Algorithm

Search Result 9, Processing Time 0.02 seconds

A New Pivot Algorithm for Star Identification

  • Nah, Jakyoung;Yi, Yu;Kim, Yong Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2014
  • In this study, a star identification algorithm which utilizes pivot patterns instead of apparent magnitude information was developed. The new star identification algorithm consists of two steps of recognition process. In the first step, the brightest star in a sensor image is identified using the orientation of brightness between two stars as recognition information. In the second step, cell indexes are used as new recognition information to identify dimmer stars, which are derived from the brightest star already identified. If we use the cell index information, we can search over limited portion of the star catalogue database, which enables the faster identification of dimmer stars. The new pivot algorithm does not require calibrations on the apparent magnitude of a star but it shows robust characteristics on the errors of apparent magnitude compared to conventional pivot algorithms which require the apparent magnitude information.

EM Development of Dual Head Star Tracker for STSAT-2 (과학기술위성2호의 이중 머리 별 추적기 개발)

  • Sin, Il-Sik;Lee, Seong-Ho;Yu, Chang-Wan;Nam, Myeong-Ryong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.96-100
    • /
    • 2006
  • We develop the Dual Head Star Tracker (DHST) to obtain the attitude information of science and Technology Satellite2 (STSAT-2). Because most of star sensor has only one head camera, star recognition is impossible when camera point to sun or earth. We therefore considered the DHST which can obtain star images from two spots simultaneously. That is, even though we fail a star recognition from an image obtained by one camera, it is possible to recognize stars from an image obtained by the other camera. In this paper, we introduce engineer model (EM) of the DHST and propose a star recognition and a star track algorithm.

A Study on Noisy Speech Recognition Using Discriminative Training for PMC Algorithm (PMC 방식에서의 분별적 학습을 이용한 잡음 음성인식에 관한 연구)

  • 정용주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.83-89
    • /
    • 2000
  • In this paper, we proposed a discriminative adaptation method for PMC algorithm and achieved improved speech recognition rate. For the adaptation, we adopted modified PMC(MPMC) which is a variant of PMC and discriminatively adapted the association factor for each mixture of the HMM in the MPMC. From the recognition experiments, the proposed method showed better recognition rate than the conventional PMC. Also, compared with STAR algorithm which is another model parameter compensation method, the proposed method showed superior performance when the SNR is very low and the adaptation data is not sufficient.

  • PDF

Rotation Invariant 3D Star Skeleton Feature Extraction (회전무관 3D Star Skeleton 특징 추출)

  • Chun, Sung-Kuk;Hong, Kwang-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.836-850
    • /
    • 2009
  • Human posture recognition has attracted tremendous attention in ubiquitous environment, performing arts and robot control so that, recently, many researchers in pattern recognition and computer vision are working to make efficient posture recognition system. However the most of existing studies is very sensitive to human variations such as the rotation or the translation of body. This is why the feature, which is extracted from the feature extraction part as the first step of general posture recognition system, is influenced by these variations. To alleviate these human variations and improve the posture recognition result, this paper presents 3D Star Skeleton and Principle Component Analysis (PCA) based feature extraction methods in the multi-view environment. The proposed system use the 8 projection maps, a kind of depth map, as an input data. And the projection maps are extracted from the visual hull generation process. Though these data, the system constructs 3D Star Skeleton and extracts the rotation invariant feature using PCA. In experimental result, we extract the feature from the 3D Star Skeleton and recognize the human posture using the feature. Finally we prove that the proposed method is robust to human variations.

The Hybrid LVQ Learning Algorithm for EMG Pattern Recognition (근전도 패턴인식을 위한 혼합형 LVQ 학습 알고리즘)

  • Lee Yong-gu;Choi Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.113-121
    • /
    • 2005
  • In this paper, we design the hybrid learning algorithm of LVQ which is to perform EMG pattern recognition. The proposed hybrid LVQ learning algorithm is the modified Counter Propagation Networks(C.p Net. ) which is use SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of LVa. The weights of the proposed C.p. Net. which is between input layer and subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVd algorithm, and pattern vectors is classified into subclasses by neurons which is being in the subclass layer, and the weights which is between subclass layer and class layer of C.p. Net. is learned to classify the classified subclass. which is enclosed a class . To classify the pattern vectors of EMG. the proposed algorithm is simulated with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

Input Pattern Vector Extraction and Pattern Recognition of Taste using fMRI (fMRI를 이용한 맛의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Sun-Yeob;Lee, Yong-Gu;Kim, Dong-Ki
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.419-426
    • /
    • 2007
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize taste(bitter, sweet, sour and salty) pattern vectors. The signal intensity of taste are used to compose the input pattern vectors. The SOM(Self Organizing Maps) algorithm for taste pattern recognition is used to learn initial reference vectors and the ot-star learning algorithm is used to determine the class of the output neurons of the sunclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ(Learning Vector Quantization) algorithm. The pattern vectors are classified into subclasses by neurons in the subclass layer, and the weights between subclass layer and output layer are learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors, the proposed algorithm is simulated with ones of the conventional LVQ, and it is confirmed that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

Input Pattern Vector Extraction and Pattern Recognition of EEG (뇌파의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Yong-Gu;Lee, Sun-Yeob;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize EEG pattern vectors. The frequency and amplitude of alpha rhythms and beta rhythms are used to compose the input pattern vectors. And the algorithm for EEG pattern recognition is used SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of the subclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ algorithm, and pattern vectors is classified into subclasses by neurons which is being in the subclass layer, and the weights between subclass layer and output layer is learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors of EEG, the proposed algorithm is simulated with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

STAR-24K: A Public Dataset for Space Common Target Detection

  • Zhang, Chaoyan;Guo, Baolong;Liao, Nannan;Zhong, Qiuyun;Liu, Hengyan;Li, Cheng;Gong, Jianglei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.365-380
    • /
    • 2022
  • The target detection algorithm based on supervised learning is the current mainstream algorithm for target detection. A high-quality dataset is the prerequisite for the target detection algorithm to obtain good detection performance. The larger the number and quality of the dataset, the stronger the generalization ability of the model, that is, the dataset determines the upper limit of the model learning. The convolutional neural network optimizes the network parameters in a strong supervision method. The error is calculated by comparing the predicted frame with the manually labeled real frame, and then the error is passed into the network for continuous optimization. Strongly supervised learning mainly relies on a large number of images as models for continuous learning, so the number and quality of images directly affect the results of learning. This paper proposes a dataset STAR-24K (meaning a dataset for Space TArget Recognition with more than 24,000 images) for detecting common targets in space. Since there is currently no publicly available dataset for space target detection, we extracted some pictures from a series of channels such as pictures and videos released by the official websites of NASA (National Aeronautics and Space Administration) and ESA (The European Space Agency) and expanded them to 24,451 pictures. We evaluate popular object detection algorithms to build a benchmark. Our STAR-24K dataset is publicly available at https://github.com/Zzz-zcy/STAR-24K.

Human Pattern Recognition and Tracking Algorithm Using Autonomous Robot based on Laser Sensor (레이저 센서 기반의 자율 이동 로봇을 이용한 사람 인식 및 추적 알고리즘)

  • Lee, Jae-Pil;Han, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.101-104
    • /
    • 2011
  • 본 논문에서는 레이저 센서를 장착한 자율 이동 로봇을 이용하여 실내에서 장애물들을 검출한다. 데이터에서 나오는 패턴을 인식해 사람과 정적 장애물을 실시간으로 구분한 후 사람의 속도와 로봇의 속도를 각각 비교하여 따로 지정해준 안전거리를 유지하며 주행한다. 예상치 못한 상황이 발생될 것을 대비해 로봇의 전방에 범퍼 센서를 장착하여 안전성을 고려하였다. 로봇의 자기 위치 인식을 위해 StarGazer센서를 이용하였다. 패턴은 레이저 센서 데이터의 거리, 각 값을 이용하여 다리 패턴의 너비를 구하고 너비의 가운데 점을 중심점으로 지정해 추적하며 구동하는 알고리즘을 구현하였다.

  • PDF