• 제목/요약/키워드: Star Clusters

검색결과 227건 처리시간 0.032초

THE EFFECTS OF HORIZONTAL-BRANCH STARS ON THE H$\beta$ INDEX OF SIMPLE STELLAR POPULATION MODELS

  • LEE HYUN-CHUL;LEE YOUNG-WOOK;PARK JANG-HYUN
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.133-134
    • /
    • 1996
  • We present the systematic variations of H$\beta$ index of simple stellar populations due to horizontal-branch (HB) stars. Most of the previous works have been done without careful considerations of HB stars. Since the Balmer line strengths are very sensitive to the temperature, including the HB stars are quite important. We found that the strength of H,6 index is strongly affected by HB stars, and hence the age estimation without careful consideration of the variation of HB morphology with metallicity and age would underestimate the ages of ellipticals.

  • PDF

Early Dynamical Evolution of Star Clusters Near the Galactic Centre

  • Park, So-Myoung;Goodwin, Simon P.;Kim, Sungsoo S.
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.33.3-33.3
    • /
    • 2017
  • 현재 관측되는 대부분의 성단들은 구형의 구조를 보이는 반면, 별탄생 지역은 구형의 구조와는 다른 프랙털(fractal) 구조를 보이고 있다. 본 연구에서는 초기에 프랙털 구조를 가지는 성단이 우리 은하 중심부근에서 어떻게 진화하는지 N-body 시뮬레이션을 이용해 연구하였다. 그 결과, 프랙털 구조의 성단이 우리 은하 중심부근의 강력한 조석력장 내에서 살아남기 위해서는 초기 밀도가 높아야 한다는 것을 발견하였다. 성단의 초기 밀도가 높기 때문에 프랙털 구조의 성단은 빠른 역학적 진화를 보이며 구형의 성단으로 진화한다. 플러머 (Plummer) 구조의 성단도 프랙털 구조의 성단과 같이 초기 밀도가 높아야 살아남지만 프랙털 구조보다는 역학적인 진화가 느렸다. 이러한 결과들은 Arches 성단처럼 우리 은하 중심부근에서 관측되는 성단들의 형성과 진화에 제약조건을 줄 수 있을 것으로 예상된다.

  • PDF

PHOTOMETRIC STUDY OF IC 2156

  • TADROSS, A.L.;HENDY, Y.H.M.
    • 천문학회지
    • /
    • 제49권2호
    • /
    • pp.53-57
    • /
    • 2016
  • We present an optical UBVRI photometric analysis of the poorly studied open star cluster IC 2156 using Sloan Digital Sky Survey data in order to estimate its astrophysical properties. We compare these with results from our previous studies that relied on the 2MASS JHK near-infrared photometry. The stellar density distributions and color-magnitude diagrams of the cluster are used to determine its geometrical structure, real radius, core and tidal radii, and its distance from the Sun, the Galactic plane, and the Galactic center. We also estimate, the age, color excesses, reddening-free distance modulus, membership, total mass, luminosity function, mass function, and relaxation time of the cluster.

Stellar populations of the M87 globular cluster system

  • Ko, Youkyung;Peng, Eric W.;Longobardi, Alessia
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.38.1-38.1
    • /
    • 2019
  • Globular clusters (GCs) are one of the excellent tools to trace the assembly history of their host galaxies. Especially, the ages and abundances of the GCs give important clues about the star formation epochs and merging progenitors. We investigate the stellar population of the GCs in M87 based on a stacking analysis using about 900 MMT/Hectospec spectra of the GCs. We measure the ages, [Z/H], and [a/Fe] from the stacked spectra of the GCs within radial bins based on Lick indices. We find clear radial gradients for [Z/H] and [a/Fe] in the GC system. In addition to the radial trends, we investigate the stellar populations of the GC subgroups divided according to colors, radial velocities, and spatial locations. We discuss the formation history of M87 based on the stellar populations of the GCs.

  • PDF

Environmental Dependence of High-redshift Galaxies in CFHTLS W2 Field

  • 백인수;임명신;김재우
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.36.1-36.1
    • /
    • 2018
  • Star formation activity of galaxies, along with color and morphology, show significant environmental dependence in local universe, where galaxies in dense environment tend to be more quiescent and redder. However, many studies show that such environmental dependence does not continue at higher redshifts beyond z~1. The question of how the environmental dependence of galactic properties have developed over time is crucial to understanding cosmic galactic evolution. By combining data from Canada-France-Hawaii Telescope Legacy Survey(CFHTLS), Infrared Medium-Deep Survey(IMS), and other surveys, the photometric redshifts of galaxies in CFHTLS W2 field were estimated by fitting spectral energy distribution. The distribution of galaxies was mapped in redshift bins of 0.05 interval from 0.6 to 1.4. For each redshift bin, the number density was mapped. The galaxies in high density regions were grouped into clusters using friend-of-friend method. The color of galaxies were analyzed to study the correlation with redshift as well as environmental difference between field galaxies and cluster member galaxies.

  • PDF

Discovery of the prominent radio relics in the cluster merger ZwCL J1447+2619

  • Lee, Wonki;Kim, Hyeonghan;Jee, Myungkook James
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.39.2-39.2
    • /
    • 2019
  • Diffuse radio emissions at the outskirt of merging galaxy clusters called radio relics provide a unique channel to understand the merger history. We present a recent discovery of double radio relics in the cluster merger ZwCL1447+2619 from our recent Giant Metrewave Radio Telescope observations. Both Band 3 (300-500 MHz) and Band 4 (550-850 MHz) data reveal a large (~1Mpc) and thin (~40kpc) radio relic ~1Mpc from the cluster X-ray center and a small radio relic (~0.3 Mpc) on the opposite side. These remarkable radio data together with Subaru weak-lensing analysis and Chandra X-ray observations enable us to reconstruct the merger scenario. Our preliminary analysis suggests that the cluster ZwCL J1447+2619 is a post-merger near its returning phase. In addition, using Keck DEIMOS spectroscopy, we find many "green" and "blue" member galaxies are located between the radio relics, a possible indication of merger shock-driven star formation activities.

  • PDF

Lyα Polarization: An Implication to the Lyα Blobs

  • 선광일
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.30.2-30.2
    • /
    • 2021
  • The extended Lyα nebulae (also known as Lyα blobs or LABs) observed at z=2-6 can provide clues to galaxy formation in the early universe. The connection of LABs with the overdensities of compact Lyα emitters suggests that they are associated with matter density peaks in the universe and thus likely to evolve into the present-day groups and clusters of galaxies. However, the mechanism powering the extended Lyα emission in LABs is remained controversial. The detection of polarization signals that follow the theoretically predicted trend is interpreted as strong evidence supporting that the LABs are caused primarily by the resonance scattering of Lyα originating from star-forming galaxies and AGNs. However, Trebitsch et al. (2016) claimed that the radial profile of polarization could be better explained by the scenario in which Lyα photons are produced in the cooling gas surrounding galaxies and then self-scattered by the gas, rather than by the scattering scenario of photons originating from the central galaxies. In this presentation, using LaRT, a state-of-art Lyα radiative transfer code, it is demonstrated that the observed polarization pattern can be reproduced even with the scattering scenario.

  • PDF

THEORETICAL STUDY ON OBSERVED COLOR-MAGNITUDE DIAGRAMS

  • Lee, See-Woo
    • 천문학회지
    • /
    • 제12권1호
    • /
    • pp.41-70
    • /
    • 1979
  • From $B\ddot{o}hm$-Vitense's atmospheric model calculations, the relations, [$T_e$, (B-V)] and [B.C, (B-V)] with respect to heavy element abundance were obtained. Using these relations and evolutionary model calculations of Rood, and Sweigart and Gross, analytic expressions for some physical parameters relating to the C-M diagrams of globular clusters were derived, and they were applied to 21 globular clusters with observed transition periods of RR Lyrae variables. More than 20 different parameters were examined for each globular cluster. The derived ranges of some basic parameters are as follows; $Y=0.21{\sim}0.33,\;Z=1.5{\times}10^{-4}{\sim}4.5{\times}10^{-3},\;age,\;t=9.5{\sim}19{\times}10^9$ years, mass for red giants, $m_{RG}=0.74m_{\odot}{\sim}0.91m_{\odot}$, mass for RR Lyrae stars, $m_{RR}=0.59m_{\odot}{\sim}0.75m_{\odot}$, the visual magnitude difference between the turnoff point and the horizontal branch (HB), ${\Delta}V_{to}=3.1{\sim}3.4(<{\Delta}V_{to}>=3.32)$, the color of the blue edge of RR Lyrae gap, $(B-V)_{BE}=0.17{\sim}0.21=(<(B-V)_{BE}>=0.18),\;[\frac{m}{L}]_{RR}=-1.7{\sim}-1.9$, mass difference of $m_{RR}$ relative to $m_{RG},(m_{RG}-m_{RR})/m_{RG}=0.0{\sim}0.39$. It was found that the ranges of derived parameters agree reasonably well with the observed ones and those estimated by others. Some important results obtained herein can be summarized as follows; (i) There are considerable variations in the initial helium abundance and in age of globular clusters. (ii) The radial gradient of heavy element abundance does exist for globular clusters as shown by Janes for field stars and open clusters. (iii) The helium abundance seems to have been increased with age by massive star evolution after a considerable amount (Y>0.2) of helium had been attained by the Big-Bang nucleosynthesis, but there is not seen a radial gradient of helium abundance. (iv) A considerable amount of heavy elements ($Z{\sim}10{-3}$) might have been formed in the inner halo ($r_{GC}$<10 kpc) from the earliest galactic co1lapse, and then the heavy element abundance has been slowly enriched towards the galactic center and disk, establishing the radial gradient of heavy element abundance. (v) The final galactic disk formation might have taken much longer by about a half of the galactic age than the halo formation, supporting a slow, inhomogeneous co1lapse model of Larson. (vi) Of the three principal parameters controlling the morphology of C-M diagrams, it was found that the first parameter is heavy clement abundance, the second age and the third helium abundance. (vii) The globular clusters can be divided into three different groups, AI, BI and CII according to Z, Y an d age as well as Dickens' HB types. BI group clusters of HB types 4 and 5 like M 3 and NGC 7006 are the oldest and have the lowest helium abundance of the three groups. And also they appear in the inner halo. On the other hand, the youngest AI clusters have the highest Z and Y, and appear in the innermost halo region and in the disk. (viii) From the result of the clean separations of the clusters into three groups, a three dimensional classification with three parameters, Z, Y and age is prsented. (ix) The anomalous C-M diagrams can be expalined in terms of the three principal parameters. That is, the anomaly of NGC 362 and NGC 7006 is accounted for by the smaller age of the order of $1{\sim}2{\times}10^9$ years rather than by the helium abundance difference, compared with M 3. (x) The difference in two Oosterhoff types I and II can be explained in terms of the mean mass difference of RR Lyrae variables rather than in terms of the helium abundance difference as suggested by Stobie. The mean mass of the variables in Oosterhoff type I clusters is smaller by $0.074m_{\odot}$ which is exactly consistent with Rood's estimate. Since it was found that the mean mass of RR Lyrae stars increases with decreasing Z, the two Oosterhoff types can be explained substantially by the metal abundance difference; the type II has Z<$3.4{\times}10^{-4}$, and the type I has higher Z than the type II.

  • PDF

다파장 관측 자료를 이용한 다양한 환경에서의 은하 진화 연구 (A Multi-Wavelength Study of Galaxy Transition in Different Environments)

  • 이광호
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.34.2-35
    • /
    • 2018
  • Galaxy transition from star-forming to quiescent, accompanied with morphology transformation, is one of the key unresolved issues in extragalactic astronomy. Although several environmental mechanisms have been proposed, a deeper understanding of the impact of environment on galaxy transition still requires much exploration. My Ph.D. thesis focuses on which environmental mechanisms are primarily responsible for galaxy transition in different environments and looks at what happens during the transition phase using multi-wavelength photometric/spectroscopic data, from UV to mid-infrared (MIR), derived from several large surveys (GALEX, SDSS, and WISE) and our GMOS-North IFU observations. Our multi-wavelength approach provides new insights into the *late* stages of galaxy transition with a definition of the MIR green valley different from the optical green valley. I will present highlights from three areas in my thesis. First, through an in-depth study of environmental dependence of various properties of galaxies in a nearby supercluster A2199 (Lee et al. 2015), we found that the star formation of galaxies is quenched before the galaxies enter the MIR green valley, which is driven mainly by strangulation. Then, the morphological transformation from late- to early-type galaxies occurs in the MIR green valley. The main environmental mechanisms for the morphological transformation are galaxy-galaxy mergers and interactions that are likely to happen in high-density regions such as galaxy groups/clusters. After the transformation, early-type MIR green valley galaxies keep the memory of their last star formation for several Gyr until they move on to the next stage for completely quiescent galaxies. Second, compact groups (CGs) of galaxies are the most favorable environments for galaxy interactions. We studied MIR properties of galaxies in CGs and their environmental dependence (Lee et al. 2017), using a sample of 670 CGs identified using a friends-of-friends algorithms. We found that MIR [3.4]-[12] colors of CG galaxies are, on average, bluer than those of cluster galaxies. As CGs are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends can also be seen for neighboring galaxies around CGs. However, CG members always have larger early-type fractions and bluer MIR colors than their neighboring galaxies. These results suggest that galaxy evolution is faster in CGs than in other environments and that CGs are likely to be the best place for pre-processing. Third, post-starburst galaxies (PSBs) are an ideal laboratory to investigate the details of the transition phase. Their spectra reveal a phase of vigorous star formation activity, which is abruptly ended within the last 1 Gyr. Numerical simulations predict that the starburst, and thus the current A-type stellar population, should be localized within the galaxy's center (< kpc). Yet our GMOS IFU observations show otherwise; all five PSBs in our sample have Hdelta absorption line profiles that extend well beyond the central kpc. Most interestingly, we found a negative correlation between the Hdelta gradient slopes and the fractions of the stellar mass produced during the starburst, suggesting that stronger starbursts are more centrally-concentrated. I will discuss the results in relation with the origin of PSBs.

  • PDF

Infrared Spectro-Photomeric Survey Missions: NISS & SPHEREx

  • Jeong, Woong-Seob;Yang, Yujin;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Minjin;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Park, Young-Sik;Jo, Youngsoo;Kim, Il-Joong;Ko, Jongwan;Seo, Hyun Jong;Ko, Kyeongyeon;Kim, Seongjae;Hwang, Hoseong;Song, Yong-Seon;Lee, Jeong-Eun;Im, Myungshin;Matsumoto, Toshio
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.57.2-57.2
    • /
    • 2019
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 was successfully launched on last December and is now under the operation phase. The capability of both imaging and spectroscopy is a unique function of the NISS. It has realized the imaging spectroscopy (R~20) with a wide field of view of $2{\times}2deg$. in a wide near-infrared range from 0.95 to $2.5{\mu}m$. The major scientific mission is to study the cosmic star formation history in the local and distant universe. It also demonstrated the space technologies related to the infrared spectro-photometry in space. The NISS is performing the imaging spectroscopic survey for local star-forming galaxies, clusters of galaxies, star-forming regions, ecliptic deep fields and so on. As an extension of the NISS, the SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) was selected as the NASA MIDEX (Medium-class Explorer) mission (PI Institute: Caltech). As an international partner, KASI will participate in the development and the science for SPHEREx. It will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. Compared to the NISS, the SPHEREx is designed to have a much wider FoV of $3.5{\times}11.3deg$. as well as wider spectral range from 0.75 to $5.0{\mu}m$. Here, we introduce the status of the two space missions.

  • PDF