• Title/Summary/Keyword: Standstill induction motor parameters

Search Result 6, Processing Time 0.02 seconds

Identification of Parameters for Induction Motor at Standstill (완전 정지형 방식에 의한 유도 전동기 파라미터 오토튜닝)

  • Kim J.H.;Hong C.O.;Kwon B.H.;Lim K.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.900-903
    • /
    • 2003
  • An identification method of induction motor parameters such as rotor time constant and mutual inductance at standstill condition is discussed assuming that stator resistance and leakage has already been obtained applying two different DC voltage and single phase voltage to the induction motor, respectively. This proposed scheme is implemented by means of Model Reference Adaptive Control (MRAC) technique, which uses a rotor flux equation in voltage model as a reference model and one in current model and is demonstrated through experiment.

  • PDF

Parameter Identification of Vector-Controlled Induction Motor using Skin Effect of Rotor Bars at Standstill (회전자 바의 표피효과를 이용한 벡터제어용 유도전동기의 정지형 상수추정)

  • Kwon, Young-Su;Moon, Sang-Ho;Lee, Jeong-Hum;Kwon, Byung-Ki;Choi, Chang-Ho;Seok, Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.403-410
    • /
    • 2008
  • This paper suggests a standstill estimator to accurately identify induction motor (IM) parameters necessary for the vector control. A mathematical model that faithfully represents the general skin effect is introduced. Then, two exciting signals with a different frequency are sequentially injected to track the parameters based on the skin effect of the rotor bar. Little knowledge of the unknown motor allows the proposed methodology to employ a closed-loop control of an injected current, rather than open-loop voltage injection approaches. Subsequently, this control scheme proactively prevents electrical accidents resulting from an inadequate open-loop voltage injection. We develop a specialized offline commissioning test to compensate the phase delay resulting from the drive, which significantly affects the precision of the IM parameters. The effectiveness of the identification technique is validated by means of experiments performed on the three different IMs.

Parameter Identification of Induction Motor from Step Response (계단응답을 이용한 유도 전동기 파라미터 식별)

  • Jeon, Bum-Ho;Roh, Chi-Won;Ryu, Joon-Hyoung;Lee, Kwang-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.4
    • /
    • pp.151-157
    • /
    • 2001
  • This paper presents an identification method of parameters of induction motor which is driven by PWM voltage inverter. The method uses least square estimation based on the step voltage input and current response. Utilizing the fact that ratio of two characteristic roots is large in the induction motor circuit, we derived two 1st-order difference equations for direct computation of parameter values. experimental results are compared with conventional motor test results to demonstrate that the proposed method is capable of estimating parameters of induction motor at standstill.

  • PDF

A Study on the Off-Line Parameter Estimation for Sensorless 3-Phase Induction Motor using the D-Axis Model in Stationary Frame (정지좌표계 d축 모델을 이용한 위치센서 없는 3상 유도전동기의 오프라인 제정수 추정에 관한 연구)

  • Mun, Tae-Yang;In, Chi-Gak;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Accurate parameters based on equivalent circuit are required for high-performance field-oriented control in a three-phase induction motor. In a normal case, stator resistance can be accurately measured using a measuring equipment. Except for stator resistance, all machine parameters on the equivalent circuit should be estimated with particular algorithms. In the viewpoint of traditional regions, the parameters of an induction motor can be identified through the no-load and standstill test. This study proposes an identification method that uses the d-axis model of the induction motor in a stationary frame with the predefined information on stator resistance. Mutual inductance is estimated on the rotational dq coordination similar to that in the traditional no-load experiment test. The leakage inductance and rotor resistance can be estimated simply by applying different voltages and frequencies in the d-axis model of the induction motor. The proposed method is verified through simulation and experimental results.

Induction Motor Parameter Identification using Step Response (계단 응답을 이용환 유도 전동기 파라미터 식별)

  • Jeon, Bum-Ho;Roh, Chi-Won;Ryu, Joon-Hyung;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.723-725
    • /
    • 2000
  • This paper presents a parameter identification method to estimate the stator resistance. stator inductance, rotor resistance and rotor inductance of the induction motor. A step voltage is applied across the stator terminals while the machine is in the standstill condition, and the resulting stator voltage and current response are measured. Observer/Kalman Filter Identification(OKID) algorithm is used to estimate induction motor parameters. Simulation results are presented to verify the identified model.

  • PDF

Self Tuning PI Controller of Induction Motor using Fuzzy Control (퍼지제어를 이용한 유도전동기의 자기동조 PI제어기)

  • Nam, Su-Myeong;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.173-175
    • /
    • 2004
  • This paper presents a novel design of a self tuning PI controller of induction motor using fuzzy control. In this approach, the fuzzy tuning of a PI controller gains is achieved through fuzzy rules deduced from many robustness simulation tests applied to several induction motors, for a variety of operating conditions such as response to speed command from standstill, step load torque application and speed variations, with nominal parameters and an changed rotor resistance, self inductance and inertia. Simulation results on a speed controller of induction motor are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF