• 제목/요약/키워드: Standard error of prediction

검색결과 326건 처리시간 0.025초

능형회귀에서의 로버스트한 k의 선택 방법 (Robust selection rules of k in ridge regression)

  • 임용빈
    • 응용통계연구
    • /
    • 제6권2호
    • /
    • pp.371-381
    • /
    • 1993
  • 표준화된 중회귀모형에서 다중공선성(multicollinearity)이 존재할 때, 공선성(collinearity)의 영향을 완화하기 위해서 능형회귀가 사용된다. 반응변수의 예측을 위한 기준으로서 반응변 수의 예측치의 평균제곱합(MSE)을 설명변수의 관심영역 R에서 적분한(IMSE) $J_w(k)$ 기 준이 Lim, Choi & Park(1980)에 의해 소개되었다. $C_k$기준이 설명변수의 관심영역 R상 에서의 가중치 함수인 w(x)가 각각의 자료점에서 등확률 1/n을 갖는 경우의 IMSE 기준인 $J_n(k)$ 기준과 동치라는 관계를 이용함으로 $C_k$ 기준에 대해서 Myers(1986)에 의해 주어진 k의 선택방법 보다 더 합리적이라 기대되는 k의 선택방법이 제시되었다. 다음으로 관심이 있는 모든 기준들에 대해서 상대적으로 효율이 좋은 능형회귀추정량 $\beta(k)$를 선택하기 위해서, 관심이 있는 기준들 간의 가장 나쁜 효율을 최대화한다는 의미에서 MiniMax 원칙을 채택하여 관심이 있는 기준들에 대해서 로버스트한 k의 선택방법을 제시 하였다.

  • PDF

근적외 분광분석법을 응용한 마요네즈의 식염 농도측정 (Measurement of Mayonnaise Salt Content by Near-Infrared Reflectance Spectroscopy)

  • 차익수;김진호;김현위;김형찬;이윤경;박기문;유무영
    • 한국식품과학회지
    • /
    • 제28권1호
    • /
    • pp.40-43
    • /
    • 1996
  • 비파괴적이고 신속분석이 가능한 근적외 분광분석법으로 마요네즈의 식염분석을 시도하였다. 식염은 근적외선영역에서 주성분 피크가 존재하지 않음으로 식염 함량을 다양한 통계처리 기법중에 PLS회귀법을 사용하여 100시료로 검량식을 작성하였다. $1{\sim}15$개 요인변수를 사용하여 작성된 검량식 중에서 최소값의 SECV, SE를 갖는 3개의 검량식(요인변수 : 10, 11, 12)을 선택하였다. 이 검량식들을 독립된 40시료의 검정용 시료에 적용시켜 검정한 결과, 요인변수 11의 검량식이 R 0.946, SEP 0.0166%로 가장 우수하게 평가되었다. 이 결과로부터 마요네즈의 식염분석이 근적외 분광분석법으로 측정 가능함을 확인할 수 있었다.

  • PDF

태풍 진로예측을 위한 다중모델 선택 컨센서스 기법 개발 (Development of the Selected Multi-model Consensus Technique for the Tropical Cyclone Track Forecast in the Western North Pacific)

  • 전상희;이우정;강기룡;윤원태
    • 대기
    • /
    • 제25권2호
    • /
    • pp.375-387
    • /
    • 2015
  • A Selected Multi-model CONsensus (SMCON) technique was developed and verified for the tropical cyclone track forecast in the western North Pacific. The SMCON forecasts were produced by averaging numerical model forecasts showing low 70% latest 6 h prediction errors among 21 models. In the homogeneous comparison for 54 tropical cyclones in 2013 and 2014, the SMCON improvement rate was higher than the other forecasts such as the Non-Selected Multi-model CONsensus (NSMCON) and other numerical models (i.e., GDAPS, GEPS, GFS, HWRF, ECMWF, ECMWF_H, ECMWF_EPS, JGSM, TEPS). However, the SMCON showed lower or similar improvement rate than a few forecasts including ECMWF_EPS forecasts at 96 h in 2013 and at 72 h in 2014 and the TEPS forecast at 120 h in 2013. Mean track errors of the SMCON for two year were smaller than the NSMCON and these differences were 0.4, 1.2, 5.9, 12.9, 8.2 km at 24-, 48-, 72-, 96-, 120-h respectively. The SMCON error distributions showed smaller central tendency than the NSMCON's except 72-, 96-h forecasts in 2013. Similarly, the density for smaller track errors of the SMCON was higher than the NSMCON's except at 72-, 96-h forecast in 2013 in the kernel density estimation analysis. In addition, the NSMCON has lager range of errors above the third quantile and larger standard deviation than the SMCON's at 72-, 96-h forecasts in 2013. Also, the SMCON showed smaller bias than ECMWF_H for the cross track bias. Thus, we concluded that the SMCON could provide more reliable information on the tropical cyclone track forecast by reflecting the real-time performance of the numerical models.

An Improved Calibration Method for the COCOMO II Post-Architecture Model

  • Yoon, Myoung-Young
    • 한국산업정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.47-55
    • /
    • 2000
  • 개발하는 소프트웨어의 비용, 스케줄 및 노력을 예측하기 위하여 오늘날 많은 소프트웨어 비용 모델이 개발되었다. COCOMO II은 비순차적이며, 빠른 개발방법 과정 등의 새로운 소프트웨어 생명주기에 적합한 비용 모델이다. COCOMO II모델에서 최소자승 회귀분석 방법은 조율 방법으로 널리 사용되었다. 전통적인 회귀분석 조율 방법은 데이터 ?에 대한 가정이 위배된다. 즉, 원시자료는 특히 서로 다른 개발조직으로부터 비용인자 등급, 노력, 크기가 수집되며 부정확하고 이상치가 존재한다. 본 논문에서는 이러한 한계를 극복하기 위하여 우리는 COCOMO II모델을 가지고 상대오차를 최소화하는 모델 조율에 대한 새로운 방법을 제안한다. 제안된 방법의 특징은 이상치를 갖는 원시 데이터에 덜 민감한 특성을 갖고 있다. 실험결과, 제안된 새로운 조율방법 MRE가 조정된 결정계수(adj-$R^2$), 표준편차(^$\sigma$), 예측 정도(PRED(L))에서 기존의 전통적 회귀분석 방법보다 우수하게 나타났다.

  • PDF

근적외선 분광광도계를 이용한 벼 유전자원 아밀로스 및 단백질 함량분석을 위한 모델개발 (Development of Near-Infrared Reflectance Spectroscopy (NIRS) Model for Amylose and Crude Protein Contents Analysis in Rice Germplasm)

  • 오세종;이명철;최유미;이수경;오명원;;채병수;현도윤
    • 한국자원식물학회지
    • /
    • 제30권1호
    • /
    • pp.38-49
    • /
    • 2017
  • 본 연구에서는 벼 유전자원의 이화학적 대량 분석체계 구축을 위하여 비파괴 분석 방법 중의 하나인 근적외선 분광분석(NIRS) 예측모델을 개발하고, 미지 시료 적용 시 분석 정확도와 실재 적용가능성을 평가하기 위해 교차 검정과 외부 검정을 수행하였다. NIRS 예측모델 개발을 위해 농업유전자원센터 보유자원 중 511자원을 사용하였고, 그 중 아밀로스 농도 대표자원 200점을 추가 선정하여 보존자원과 증식자원의 아밀로스 및 단백질 성분 변화를 비교하였다. 습식분석 상호비교, t-Test를 통한 통계처리 결과로 볼 때 저장고 보존자원과 증식자원 간의 중대한 이화학적 성질의 변이 현상은 관측되지 않았으므로 NIRS 예측모델 개발에 보존자원을 사용하는 것은 가능할 것으로 판단되었다. 511 자원의 습식분석 결과 아밀로스 농도는 6.15-32.25%, 단백질 농도는 4.72-14.81%였다. 현미와 현미가루의 두 가지 시료 형태에 대한 NIR 스펙트럼을 얻었고 일련의 통계적 처리를 이용하여 NIRS 예측모델을 얻었다. 현미의 $R^2$, SEC, Slope 값은 아밀로스 농도의 경우 0.906, 1.741, 0.995였고, 단백질 농도의 경우 0.941, 0.276, 1.011 이었다. 현미가루의 $R^2$, SEC, Slope 값은 아밀로스 농도의 경우 0.956, 1.159, 1.001이었고, 단백질 농도의 경우 0.982, 0.164, 1.003이었다. 이와 같은 결과로 NIRS 예측모델 개발에는 가루형태의 시료가 효율적임을 알 수 있었다. 아밀로스 농도의 경우 9.62-16.58%의 자원밀도가 상대적으로 낮은 구간에 대한 보완을 위해 추가 200자원의 습식분석, NIRS 측정 수행하였으며, 보완된 최적 NIRS 예측모델의 $R^2$, SEC, Slope 값은 아밀로스 농도의 경우 0.970, 1.010, 1.000 이었고 단백질 농도의 경우 0.983, 0.158, 0.998이었다. 최적 NIRS 예측모델의 미지시료 적용 시 정확도를 평가하기 위해 아밀로스는 132자원, 조단백질은 124자원을 검정자원으로 사용하여 외부 검정과정을 거친 결과 $R^2$, SEP 값은 아밀로스 농도의 경우 0.962, 2.349였고, 단백질 농도의 경우 0.986, 0.415였다. 이상의 결과를 종합해 볼 때 본 연구에서 개발된 NIRS 예측모델은 습식분석방법을 대체하여 벼 유전자원의 아밀로스 및 단백질 농도의 대량 분석에 효율적으로 적용 가능할 것으로 판단된다.

근적외선 분광법에 의한 국내 축우용 TMR의 성분추정 (Prediction on the Quality of Total Mixed Ration for Dairy Cows by Near Infrared Reflectance Spectroscopy)

  • 기광석;김상범;이현준;양승학;이재식;김택림;김현섭;여준모;구재연;조종구
    • 한국초지조사료학회지
    • /
    • 제29권3호
    • /
    • pp.253-262
    • /
    • 2009
  • 본 연구의 목적은 축우용 TMR 사용이 점차 증가하고 있으나 TMR의 영양성분을 측정하고자 할 경우 실험실 분석에 의존하므로 많은 비용과 시간이 소요되어 농가 현장에서 활용하기가 어려움에 따라 NIRS(Near InfraRed Spectroscopy, 근적외선분광분석기)을 이용하여 TMR에 대한 신속하고 간편하게 사료가치를 평가하기 위한 검량선을 작성하기 위하여 실시하였다. 근적외선 분광분석법은 친환경 분석으로서 시약의 사용이 전혀 없고, 폐수 및 유해물질의 사용이 전혀 없어 작업자의 환경을 개선 할 수 있다. 또한 분석시간이 일반 분석법에 비해 10배 이상 빠르며, 누구나 간단한 교육을 통해서 표준분석 방법을 개발하여 적용할 수 있는 분석법이다. 그러나 NIR 성분분석기를 이용할 경우 많은 TMR 시료 샘플을 분석 비교하여 새로운 검량선을 만들어야 한다는 애로사항이 있다. 따라서 본 연구에서는 NIR 성분분석기를 이용하여 새로운 검량선을 만들고자 하였고 수집된 TMR 시료 253점에 대하여 부적합한 일부 시료를 제거하고 검량식 세트 160점과 검증 세트 40점으로 구별하여 일반성분분석과 각 성분에 대한 NIR Calibration curve를 만들어 비교하며 신뢰성 높은 새로운 검량선을 개발하였다. 개발된 NIR 검량선을 이용할 경우 TMR 성분분석시 신속하고 신뢰성 높은 성분분석 값을 얻을 수 있을 것으로 사료되나 보다 정확하고 정밀한 검량선을 얻기 위해서는 더 많은 시료의 수집 및 분석, TMR의 구성요소에 비율 등의 연구가 추가되어야 할 것으로 생각한다.

APCC MME 계절예측정보를 이용한 가뭄전망 (Drought Outlook using APCC MME Seasonal Prediction Information)

  • 강부식;문수진;손수진;이우진
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1784-1788
    • /
    • 2010
  • APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 형태의 계절예측정보를 이용하여 3개월 가뭄전망을 수행하였다. APCC MME는 기후예측모형이 가지는 불확실성을 최소화하기 위한 방법으로, 아시아 태평양 지역 내 9개 회원국 16개 기관 21개 기후모형의 계절예측정보를 활용하여, 개별 모형이 가지는 계통오차(Systematic error)를 앙상블 기법을 통하여 상쇄함으로써 최적의 예측자료를 도출한다. 또한, 기후예측 모형이 예측한 대기순환장은 관측 지점변수와 경험적 통계적 관련성을 가지므로, 이를 바탕으로 상세지역의 이상기후에 대한 정보를 도출할 수 있다. 본 연구에서는 가뭄 관리 및 전망을 위한 입력 자료로서, 기상전문 기관인 APEC 기후센터 (APEC Climate Center, APCC)에서 제공하는 전구 규모의 기온 및 강수 전망자료를 기상청 산하 59개 지점의 전망자료로 통계적 규모 축소화 기법을 통해 3개월 예보를 실시하였다. APCC 계절예측자료를 가뭄모니터링시스템의 자료입력 포맷에 따라 적절히 가공한 뒤, 가뭄 관리 및 전망을 위하여 SPI(Standard Precipitation Index) 및 PDSI(Palmer Drought Severity Index)지수의 입력자료로 사용하여 SPI 및 PDSI 지수를 산정하였다. 또한 분위사상법(Quantile Mapping)을 이용하여 총 59개 지점의 과거 월평균 관측값과 최근 2009년에 대한 모의값의 누적확률분포값을 계산하고 모의값의 확률분포를 관측값의 확률분포에 사상시켜 가뭄 전망을 위한 기상변수의 오차를 보정하고자 하였다. 이러한 계절예측정보를 이용하여 가뭄 전망에 대한 신뢰도가 높아진다면, 사전예방 및 피해완화로 가뭄상황에 대한 신속한 대처 및 피해의 경감이 이루어질 수 있을 것이다.

  • PDF

데이터 증강 기반 회귀분석을 이용한 N치 예측 (A Prediction of N-value Using Regression Analysis Based on Data Augmentation)

  • 김광명;박형준;이재범;박찬진
    • 지질공학
    • /
    • 제32권2호
    • /
    • pp.221-239
    • /
    • 2022
  • 플랜트, 토목 및 건축 사업에서 말뚝 설계 시 어려움을 겪는 주된 요인은 지반 특성의 불확실성이다. 특히 표준관입시험을 통해 구한 N치가 설계 시 주요 입력값이나 짧은 입찰기간과 광범위한 구역에서 다수의 현장시험을 실시하는 것은 실제적으로 어려운 상황이다. 본 연구에서는 인공지능(AI)을 가지고 회귀분석을 적용하여 N치를 예측하는 연구를 수행하였으며, 최소한의 시추자료를 학습시킨 후 표준관입시험을 실시하지 못한 곳에서 N치를 예측하는데 그 목적이 있다. AI의 학습 성능을 높이기 위해서는 빅 데이터가 중요하며, 금회 연구 시 부족한 시추자료를 빅 데이터화 하는데 '원형증강법'을 적용하여 시추반경 2 m까지 가상 N치를 생성시키는 작업을 선행하였다. AI 모델 중 인공신경망, 의사결정 나무, 오토 머신러닝을 각각 적용하였으며 이 중 최적의 모델을 선택하였다. 최적의 모델을 선택하는 방법은 세 가지의 예측된 AI 모델 중 최소 오차값을 가지는 것이다. 이를 위해 폴란드, 인도네시아, 말레이시아에서 수행한 6개 프로젝트를 대상으로 표준관입시험의 실측N치와 AI의 예측N치를 비교하여 타당성 여부를 연구하였고, 연구 결과 AI 예측값에 대한 신뢰도가 높은 것으로 분석되었다. AI 예측값을 가지고 미시추 구간에서 지반특성을 파악 할 수 있었으며 3차원 N치 분포도를 사용하면 최적의 구조물 배치가 가능함을 확인하였다.

Backpropagation 인공신경망을 이용한 지하 방사성폐기물 처분장 설계 인자의 민감도 분석 (A Sensitivity Analysis of Design Parameters of an Underground Radioactive Waste Repository Using a Backpropagation Neural Network)

  • 권상기;조원진
    • 터널과지하공간
    • /
    • 제19권3호
    • /
    • pp.203-212
    • /
    • 2009
  • 지하고준위 방사성폐기물 처분장 근계영역에서의 거동을 예측하는 것은 처분장 설계나 안전성 평가에 중요하다. 본 연구에서는 3차원 유한차분 코드를 이용하여 처분장 설계인자 및 재료물성으로 구성되는 7가지 인자에 대한 민감도 분석을 실시하였다. 민감도 분석 결과 처분공 간격, 터널 간격, 냉각시간과 암반의 열전도도가 다른 인자에 비해 영향이 큰 것으로 나타났다. 처분장 주변의 암반과 완충재 온도의 통계적인 분포를 구하기 위해 backpropagation 인공신경망 기법이 적용되었다. 학습된 인공신경망의 적합성을 평가하기 위해 무작위로 선정된 입력 인자에 대한 예측이 실시되었다. 인자 값의 변화가 ${\pm}10%$ 인 경우, 신경망은 1% 오차로 신뢰할 수 있는 예측 결과를 보임을 알 수 있었다. 이렇게 학습된 신경망은 다양한 경우에 대한 신속한 온도 예측에 활용할 수 있었다. 완충재와 암반의 온도는 각각 평균 $98^{\circ}C$, $83.9^{\circ}C$ 표준편차는 $3.82^{\circ}C$$3.67^{\circ}C$로 나타났다. 인공신경망을 이용함으로써 암반과 완충재 온도를 $1^{\circ}C$ 변화시키기 위해 필요한 설계 인자의 조정 범위를 추정할 수 있었다.

감정예측모형의 성과개선을 위한 Support Vector Regression 응용 (Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model)

  • 김성진;유은정;정민규;김재경;안현철
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.185-202
    • /
    • 2012
  • 오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.