• Title/Summary/Keyword: Standard curing

Search Result 272, Processing Time 0.02 seconds

Effect of different binders on cold-bonded artificial lightweight aggregate properties

  • Vali, Kolimi Shaiksha;Murugan, S. Bala
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.183-193
    • /
    • 2020
  • The present investigation is to identify an optimum mix combination amongst 28 different types of artificial lightweight aggregates by pelletization method with aggregate properties. Artificial aggregates with different combinations were manufactured from fly ash, cement, hydrated lime, ground granulated blast furnace slag (GGBFS), silica fume, metakaolin, sodium bentonite and calcium bentonite, at a standard 17 minutes pelletization time, with 28% of water content on a weight basis. Further, the artificial aggregates were air-dried for 24 hours, followed by hardening through the cold-bonding (water curing) process for 28 days and then testing with different physical and mechanical properties. The results found the lowest impact strength value of 16.5% with a cement-hydrated lime (FCH) mix combination. Moreover, the lowest water absorption of 16.5% and highest individual pellet crushing strength of 36.7 MPa for 12 mm aggregate with a hydrated lime-GGBFS (FHG) mix combination. The results, attained from different binder materials, could be helpful for manufacturing high strength artificial aggregates.

An Experimental Application of Concrete Using TEA in Construction Field (트리에탄올아민을 사용한 콘크리트의 현장 적용 실험)

  • Hwang, Yin-Seong;Lim, Choon-Goun;Kim, Seong-Soo;Han, Cheon -Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.23-26
    • /
    • 2003
  • This study is intended to investigate the properties of early strength development by application of TEA to the field. According to the results, when TEA is added, fluidity is almost same to base concrete, and increases upto aimed slump after field flowing. Setting time does not differ in the case of base and TEA, but retarded after flowing. The time when compressive strength gains 5 MPa, which side form can be removed, is 23 hours, and so the removal time is shortened by I hours in comparison with plain concrete. But compressive strength is almost same to that of plain concrete at 28 days. The rebound value of P type schmidt hammer show similar tendency to compressive strength, and the rebound value of structure is higher than that of standard curing specimen due to heat capacity effect and drying by the air outside. Therefore, it is thought that if the rebound value of P type schmidt hammer is controled. by about 26 in consideration of open air environment, it is very effective to determine the removal time of side forms.

  • PDF

A Study on the Physical Property by Construction Condition of Urethane Waterproofing Membrane (우레탄 도막방수재의 시공조건에 따른 물성변화)

  • Kim, Young-Sam;Han, Cheon-Goo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.138-144
    • /
    • 2013
  • This study is for quality standard establishment of urethane waterproofing membrane method which is mostly applied to waterproofing method for underground parking lot and rooftop. The experiments were carried out on color differences, membrane thickness, tensile property by curing period of liquid urethane before placing protective concrete, and resistance of crack movement according to different substrate surface and reinforcement of non-woven fabric. As a result of experiments, it was found that color differences is increase, membrane thickness is thick, tensile property is low as concrete placing period is shorter. In the fatigue property, membrane thickness of 3 mm was not broken, but 1~2 mm was broken and in the case of the membrane reinforced with non-woven fabric was more stable comparatively non-reinforcement one.

An Experimental Application of Concrete Using TEA in Construction Field (트리에탄올아민을 사용한 콘크리트의 현장 적용 실험)

  • 황인성;임춘근;김성수;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.23.1-26
    • /
    • 2003
  • This study is intended to investigate the properties of early strength development by application of TEA to the field. According to the results, when TEA is added, fluidity is almost same to base concrete, and increases upto aimed slump after field flowing. Setting time does not differ in the case of base and TEA, but is retarded after flowing. The time when compressive strength gains 5 MPa, which side form can be removed, is 23 hours, and so the removal time is shortened by 1hours in comparison with plain concrete. But compressive strength is almost same to that of plain concrete at 28 days. The rebound value of P type schmidt hammer show similar tendency to compressive strength, and the rebound value of structure is higher than that of standard curing specimen due to heat capacity effect and drying by the air outside. Therefore, it is thought that if the rebound value of P type schmidt hammer is controled. by about 26 in consideration of open air environment, it is very effective to determine the removal time of side forms.

  • PDF

A Study on Trend of Tensile Properties with Ratio of Water Mixture in Hydroponic Polyurethane Waterproofing Materials (수경화성 폴리우레탄 방수재의 물 혼입량에 따른 인장성능 변화 추이 연구)

  • Park, Wan-Goo;An, Hyun-Ho;Kim, Sun-Do;Kim, Dong-Bum;Park, Jin Sang;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.215-216
    • /
    • 2016
  • Urethane waterproofing materials which currently being used most commonly in the Korean domestic market have high applicability and construct layers without forming any joints, but under the influence of low temperature and low humidity, as well as the thickness of the applied layer, the curing time of this material may become extended in construction sites. To resolve these issues, a proposed method of using water-hardening type of polyurethane waterproofing materials are being developed. However, there currently lacks any standards or evaluation methods on determining an optimal mixture ratio of water for the water-hardening polyurethane waterproofing materials. Therefore, for the establishment of a board applicability of the water-hardening polyurethane waterproofing methods in construction sites, this study objectively analyzes the changes in the performance of these materials depending on the changes of the water mixture ratio and attempts to procure the optimal ratio on the basis of forming a provisionary standard.

  • PDF

Fabrication and Characterization of Carbon Long-Fiber Thermoplastic Composites using the LFT-D System (LFT-D 시스템을 이용한 탄소 장섬유 열가소성 복합재의 제조 및 인장특성 분석)

  • Shin, Yujeong;Jeung, Han-Kyu;Park, Si-Woo;Park, Dong-Wook;Park, Yeol;Jung, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.25-30
    • /
    • 2017
  • Carbon-fiber-reinforced plastic (CFRP) composite materials have been widely used in various industrial fields because the design variables can be adjusted according to the application of the required structure. Thermosetting and thermoplastic resins are used as the base materials of CFRP composites for the lightweight construction of automotive components. Thermoplastics have several advantages such as no curing and recyclability compared to thermosetting resin. In this study, CFRP composites were made using the Long-Fiber Thermoplastic-Direct (LFT-D) process. The LFT-D process includes an in-line production system that directly impregnates a thermoplastic resin, extrudes the composite material, and molds it. This process increases the strength and decreases the molding time. The tensile strength characteristics on the mechanical properties of CFRP were analyzed according to the parameters of LFT-D based on thermoplastics. To analyze the properties of CFRP, the specimens were prepared based on the tensile test standard ASTM 3039 of composite materials.

Mock-up Test of Concrete using Combined Coarse particle Cement and Fly-Ash (굵은 입자 시멘트 및 플라이애시를 복합 사용한 콘크리트의 Mock-up Test)

  • Lee, Chung-Sub;Lee, Jae-Youn;Jang, Duk-Bae;Kim, Young-Pil;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.87-91
    • /
    • 2009
  • This study investigates possibility for practical use through small sized test with OPC and substituted fly ash 10% and return coarse cement (RCC), classed 1100${\sim}$1200 cm2/g, which is made by Cyclone Separator at cement producing process 20% (CF) for OPC. The experimental factors are 48% of W/B and OPC and 2 kinds of concrete proportions. The target slump and air content are $150{\pm}25$ mm and $4.5{\pm}1.5$ %. For the results, the flowalility and air content of CF are less than OPC because it needs more superplasticiser and air-entraining agent. The temperature history of CF is lower than OPC about $6{\sim}10^{\circ}C$. For the strength properties, CF is less than OPC, but their gap is declined at 28 days. The strength of the specimens are ordered by standard curing, field cured specimens, and core specimens.

  • PDF

Evaluation of Leachate Containment by Soil-cement Walls for a Closed Landfill (사용종료매립지 정비를 위한 흙-시멘트 연직차수벽의 차수성능 평가)

  • Lee, Dong-Geon;Ahn, Jo-Hwan;Kwon, Ki-Wook;Koo, Ja-Kong;Bae, Woo-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.62-70
    • /
    • 2011
  • This study was conducted to evaluate the performance of soil-cement walls (SCWs) to control leachate from a leaking landfill site. Tracer tests revealed that the SCW was effective to control groundwater seepage. Approximately two-months of curing period appeared to be sufficient to ensure thorough containment of landfill leachate, although a three-week period was not enough. The water quality of the monitoring wells after construction of the SCWs met the groundwater quality standard of the korean Waste Management Act, except for bacteria and coliform groups. Also an analysis of a spring water around the landfill showed that the concentrations of ammonia, inorganic nitrogen and soluble manganese which had been common contaminants in the spring water decreased dramatically after constructing the walls. Therefore, the results suggested that a SCW can be an attractive method to control leachate from a leaking landfill site.

Prediction of mechanical properties of limestone concrete after high temperature exposure with artificial neural networks

  • Blumauer, Urska;Hozjan, Tomaz;Trtnik, Gregor
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.247-256
    • /
    • 2020
  • In this paper the possibility of using different regression models to predict the mechanical properties of limestone concrete after exposure to high temperatures, based on the results of non-destructive techniques, that could be easily used in-situ, is discussed. Extensive experimental work was carried out on limestone concrete mixtures, that differed in the water to cement (w/c) ratio, the type of cement and the quantity of superplasticizer added. After standard curing, the specimens were exposed to various high temperature levels, i.e., 200℃, 400℃, 600℃ or 800℃. Before heating, the reference mechanical properties of the concrete were determined at ambient temperature. After the heating process, the specimens were cooled naturally to ambient temperature and tested using non-destructive techniques. Among the mechanical properties of the specimens after heating, known also as the residual mechanical properties, the residual modulus of elasticity, compressive and flexural strengths were determined. The results show that residual modulus of elasticity, compressive and flexural strengths can be reliably predicted using an artificial neural network approach based on ultrasonic pulse velocity, residual surface strength, some mixture parameters and maximal temperature reached in concrete during heating.

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis

  • Kuo, Wen-Ten;Shu, Chun-Ya
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.261-274
    • /
    • 2015
  • This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.