• 제목/요약/키워드: Standard Reactor

검색결과 362건 처리시간 0.023초

원자력발전소 유출계통의 과도현상에 대한 연구 (A Study on Hydraulic Transients of Letdown System of Nuclear Power Plant)

  • 김민;정장규;김은기;노태선;이성노;유성연
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.493-498
    • /
    • 2002
  • The letdown system of pressurized water reactor (PWR) nuclear fewer plants had experienced instabilities in letdown system due to unacceptable flow characteristics of control valves. The Korean Standard Nuclear Power Plants (KSNPs) have three flow paths in parallel for letdown new control. Each flow path consists of two offices and one isolation valve. This study evaluates the effect of orifice arrangement and valve stroke time of letdown isolation valve on the system transients because sudden flow changes due to valve actuation can generate high pressure peaks in letdown line. A pressure transient analysis has been preformed to evaluate the impact of dynamic transients. This analysis uses MMS which is a simulation code developed by EPRI based on the method of characteristics. The result shows that the pressure peak is reduced in the continuous arrangement but negligible. Additionally, it shows that the stroke time of linear type flog valve greater than 15 seconds can give more stable performance.

  • PDF

하나로 유동모의 설비의 유체순환계통 해석 (The Analysis of Flow Circulation System for HANARO Flow Simulated Test Facility)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.419-424
    • /
    • 2002
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality In February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulation facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The flow circulation system is composed of a circulation pump, a core flow pipe, a core bypass flow pipe and instruments. The system is to be filled with de-mineralized water and the flow should be met the design flow to simulate similar flow characteristics in the core channel of the half-core test facility to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the system. The computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with standard k-$\epsilon$ turbulence model and for the verification of the structural piping integrity through the finite element method. The results of the analysis are satisfied the design requirements and structural piping integrity of flow circulation system.

  • PDF

Torrefaction and Hydrothermal Carbonization (HTC) of Dead Leaves

  • Saqib, Najam Ul;Park, Seong-Kyu;Lee, Jai-Young
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권5호
    • /
    • pp.45-52
    • /
    • 2014
  • Torrefaction and hydrothermal carbonization (HTC) are productive methods to reclaim energy from lignocellulosic biomass. The hydrophobic, homogenized, energy dense and carbon rich solid fuel can be obtain from torrefaction and hydrothermal carbonization. Dead leaves were carbonized in a stainless steel reactor of volume 200 ml with torrefaction ($250-270^{\circ}C$) for 120 minutes and hydrothermal carbonization ($200-250^{\circ}C$) for 30 minutes, with mass yield solid fuel ranging from 57-70% and energy content from 16.81MJ/kg to 22.01 MJ/kg compare to the biomass. The char produced from torrefaction process possess high energy content than hydrothermal carbonization. The highest energy yield of 89.96% was obtained by torrefaction at $250^{\circ}C$. The energy densification ratio fluctuated in between 1.15 to 1.30. On the basis of pore size distribution of the chars, the definition of the International Union of Pure and Applied Chemistry (IUPAC) was used as a classification standard. The pore diameter was ranging within 11.09-19 nm which play important role in water holding capacity in soil. Larger pores can hold water and provide passage for small pores. Therefore, it can be concluded that high pore size char can be obtained my HTC process and high energy content char of 22.01 MJ/Kg with 34.04% increase in energy can be obtain by torrefaction process.

Assessment of Dryout Heat Flux Correlations for Particle Beds

  • Jeong, Yong-Hoon;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.362-367
    • /
    • 1997
  • To assess the coolability of particle bed, which is formed in reactor cavity, it is important to assess the prediction capabilities of Dryout Heat flux correlations. The existing DHF correlations (Sowa et al., Dhir-Catton (a), Dhir-Catton (b), Hardee-Nilson, Ostesen, Shires-Stevens, Lipinski, Jones et al., Dhir-Barleon, Theofanous-Saito, Henry-Fauske) for particle beds are assessed using developed DHF database. Eleven DHF correlations are chosen for assessment based on literature survey. Among them, five are based on flooding correlation, which are used for chemical engineering and others are based on conservation equations. The parameters in DHF correlations are directly substituted into correlations. Totally 202 data are classified into 6 groups based on bed thickness and particle diameter. In each group, prediction capabilities of correlations are assessed and shown by standard deviation and root mean square (RMS) error. Prediction capability of each correlation depends on the data group and none of correlations shows best prediction capability on entire groups. According to present study, even if those correlations show poor prediction capability, Lipinski correlation is best correlation considering entire groups.

  • PDF

나선형코일 튜브 비등2상 유동 수치해석 (Numerical Simulation of Boiling 2-Phase Flow in a Helically-Coiled Tube)

  • 조종철;김웅식;김효정;이용갑
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.49-55
    • /
    • 2004
  • This paper addresses a numerical simulation of the flow and heat transfer in a simplified model of helically coiled tube steam generator using a general purpose computational fluid dynamic analysis computer code. The steam generator model is comprised of a cylindrical shell and helically coiled tubes. A cold feed water entered the tubes is heated up, evaporates. and finally become a superheated steam with a large amount of heat transferred continuously from the hot compressed water at higher pressure flowing counter-currently through the shell side. For the calculation of tube side two-phase flow field formed by boiling, inhomogeneous two-fluid model is used. Both the internal and external turbulent flows are simulated using the standard k-e model. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. The numerical calculations are peformed for helically coiled tubes of steam generator at an integral type pressurized water reactor under normal operation. The effects of tube-side inlet flow velocity are discussed in details. The results of present numerical simulation are considered to be physically plausible based on the data and knowledge from previous experimental and numerical studies where available.

  • PDF

A Multi-Dimensional Thermal-Hydraulic System Analysis Code, MARS 1.3.1

  • Jeong, Jae-Jun;Ha, Kwi-Seok;Chung, Bub-Dong;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.344-363
    • /
    • 1999
  • A multi-dimensional thermal-hydraulic system analysis code, MARS 1.3.1, has been developed in order to have the realistic analysis capability of two-phase thermal-hydraulic transients for pressurized water reactor (PWR) plants. As the backbones for the MARS code, the RELAP5/MOD3.2.1.2 and COBRA-TF codes were adopted in order to take advantages of the very general, versatile features of RELAP5 and the realistic three-dimensional hydrodynamic module of COBRA-TF. In the MARS code, all the functional modules of the two codes were unified into a single code first. Then, the source codes were converted into the standard Fortran 90, and then they were restructured using a modular data structure based on "derived type variables" and a new "dynamic memory allocation" scheme. In addition, the Windows features were implemented to improve user friendliness. This paper presents the developmental work of the MARS version 1.3.1 including the hydrodynamic model unification, the heat structure coupling, the code restructuring and modernization, and their verifications.their verifications.

  • PDF

Assessment of Fatigue and Fracture on a Tee-Junction of LMFBR Piping Under Thermal Striping Phenomenon

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.267-275
    • /
    • 1999
  • This paper deals with the industrial problem of thermal striping damage on the French prototype fast breeder reactor, Phenix and it was studied in coordination with the research program of IAEA. The thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the tee-junction of the secondary piping using Green's function method and standard FEM is presented. The thermohydraulic(T/H) loading condition used in the present analysis is the random type thermal loads computed by T/H analysis on the turbulent mixing of the two flows with different temperatures. The thermomechanical fatigue damage was evaluated according to ASME code section 111 subsection NH. The results of the fatigue analysis showed that fatigue failure would occur at the welded joint within 90,000 hours of operation. The assessment for the fracture behavior of the welded joint showed that the crack would be initiated at an early stage in the operation. It took 42,698.9 hours for the crack to propagate up to 5 mm along the thickness direction. After then, however, the instability analysis, using tearing modulus, showed that the crack would be arrested, which was in agreement with the actual observation of the crack. An efficient analysis procedure using Green's function approach for the crack propagation problem under random type load was proposed in this study. The analysis results showed good agreement with those of the practical observations.

  • PDF

Recent Advances in Titania-based Composites for Photocatalytic Degradation of Indoor Volatile Organic Compounds

  • Raza, Nadeem;Kim, Ki-Hyun;Agbe, Henry;Kailasa, Suresh Kumar;Szulejko, Jan E.;Brown, Richard J.C.
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.217-234
    • /
    • 2017
  • Indoor air pollutants can cause severe health problems, specifically in terms of toxicological impacts on human. Every day, a complex mixture of many air pollutants is emitted from various sources and subject to atmospheric processes that can create varied classes of pollutants such as carboxylic acids, aldehydes, ketones, peroxyacetyl nitrate, and hydrocarbons. To adhere to indoor air quality standards, a number of techniques such as photocatalytic oxidation of various volatile organic compounds (VOCs) have been employed. Among these techniques, titania ($TiO_2$) based photocatalytic reactions have proven to be the best benchmark standard approach in the field of environmental applications. Over the last 45 years, $TiO_2$-based photocatalytic reactions have been explored for the degradation of various pollutants. This review discusses the indoor air quality profile, types of indoor pollutants, available indoor air cleaning approaches, and performance of $TiO_2$-based catalysts. Finally, we have presented the perspectives on the progress of $TiO_2$ induced photocatalysis for the purification of indoor air.

Measurement of Energy Dependent Neutron Capture Cross Section of 99Tc

  • Lee, Sam-Yol;Lee, Sang-Bock;Lee, Jun-Haeng;Lee, Jeung-Min;Yoon, Jung-Ran
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2004년도 추계 종합학술대회 논문집
    • /
    • pp.495-500
    • /
    • 2004
  • The neutron capture cross section of $^{99}Tc$ has been measured relative to the $^{10}B$(n,g) standard cross section by the neutron time-of-flight(TOF) method in the energy range of 0.007 eV to 47keV using a 46-MeV electron linear accelerator(linac) at the Research Reactor Institute, Kyoto University(KURRI). In order to experimentally prove the result obtained, the supplementary cross section measurement has been made from 0.3 eV to 1 keV using the Kyoto University Lead slowing-down Spectrometer(KULS) coupling to the linac. The relative measurement by the TOF method has been normalized to the reference value(20.01 b) at 0.0253 eV and the KULS measurement to that by the TOF method. The existing experimental data and the evaluated capture cross sections in ENDF/B-VI, JENDL-3.2, and JEF-2.2 have been compared with the current measurements by the linac TOF and the KULS experiments. The energy dependency of the KULS data is close to that of the TOF data which are energy-broadened by the resolution function of the KULS.

  • PDF

자동차 보호용 아크릴 점착제의 제조 및 내성조사 (Preparation and Resistant Property of Acrylic Adhesives for Automobiles Protection)

  • 함현식;박지영;안성환;김송형;홍석영;박홍수
    • 한국응용과학기술학회지
    • /
    • 제23권2호
    • /
    • pp.169-176
    • /
    • 2006
  • Acrylic adhesives for automobiles protection were prepared by emulsion polymerization. Monomers used were n-butyl acrylate(BA), acrylonitrile (AN), butyl methacrylate(BMA), glycidyl methacrylate(GMA), and acrylic acid (AA). Emulsifiers used were sodium lauryl sulfate and polyoxyethylene lauryl ether, which are an anionic emulsifier and a nonionic emulsifier respectively. Potassium persulfate was used as an initiator and polyvinyl alcohol was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch reactor at $70^{\circ}C$ and agitation speed was kept at 200 rpm. Water resistance, heat resistance, acid resistance, alkali resistance and smoke resistance were examined. As a result, when each 0.03 mole of GMA and AA was introduced, the adhesion properties and various above mentioned resistances of the prepared adhesives were satisfied the standard for automobiles.