• 제목/요약/키워드: Standard Dynamics Model

검색결과 184건 처리시간 0.025초

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

CFD를 활용한 DOC-DPF 조합의 유동 균질도 분석 (Flow Uniformity Analysis of DOC-DPF System using CFD)

  • 김태훈;박성욱
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.122-129
    • /
    • 2019
  • Flow uniformity in aftertreatment system is an important factor in determining uniform catalytic reaction and filtration. In this study, variety types of DOC-DPF system design were analyzed to increase flow uniformity. For this analysis, ANSYS Fluent was used with porous media setup for DOC and DPF. Turbulent flow was modeled by standard $k-{\varepsilon}$ model excepting porous media. Uniformity index was utilized to evaluate the flow uniformity quantitatively. Reference design showed low velocity region because two large vortex were generated before baffle. When radius of DOC-DPF system was increased, exhaust pressure acting on the inlet decreases and velocity distribution was shifted to one side. When inlet pipe was set to axial center of DOC-DPF system velocity distribution was symmetric. However, flow was not dissipated until the front end of DOC and showed higher uniformity index. When the volume of DOC was reduced while fixed volume of entire DOC-DPF system and baffle plate is located downstream of the DOC-DPF system, there was improvement in uniformity index.

CFD 모델을 이용한 단순 스프링클러 헤드 주위의 액막 유동해석 (Numerical Analysis of a Liquid Sheet Flow around a Simplified Sprinkler Head Using a CFD Model)

  • 김성찬
    • 한국화재소방학회논문지
    • /
    • 제30권6호
    • /
    • pp.111-117
    • /
    • 2016
  • 본 연구는 스프링클러 헤드 근처에서 형성되는 액막의 자유표면 유동에 대해 CFD 모델을 적용하여 해석하고 스프링클러의 초기분무 특성 예측을 위한 기존 이론식의 결과와 비교를 통해 이론 모델의 타당성을 검토하였다. CFD 해석은 상용 해석프로그램인 CFX 14.0을 이용하였으며 노즐과 디플렉터로 이루어진 단순형상에 대해 표준난류모델과 VOF법을 적용하여 해석을 수행하였다. 평판부의 디플렉터 끝단에서 속도분포는 CFD 해석과 경험식이 매우 잘 일치된 결과를 보였으나 기하학적 형상이 복잡한 부분에서는 속도분포의 차이를 보였다. 이론모델에서 예측된 평균액적크기는 실제 스프링클러 헤드에서 측정된 평균액적크기에 대한 이전 연구결과와 큰 차이를 보였다. 그러나 이론 모델은 스프링클러 헤드의 초기 액적형성과정의 메커니즘을 이해하고 실험적 접근이 용이하지 않은 상황에서 분무 액적의 특성을 예측하는데 유동한 도구로 활용될 수 있다.

Development and validation of a non-linear k-ε model for flow over a full-scale building

  • Wright, N.G.;Easom, G.J.;Hoxey, R.J.
    • Wind and Structures
    • /
    • 제4권3호
    • /
    • pp.177-196
    • /
    • 2001
  • At present the most popular turbulence models used for engineering solutions to flow problems are the $k-{\varepsilon}$ and Reynolds stress models. The shortcoming of these models based on the isotropic eddy viscosity concept and Reynolds averaging in flow fields of the type found in the field of Wind Engineering are well documented. In view of these shortcomings this paper presents the implementation of a non-linear model and its evaluation for flow around a building. Tests were undertaken using the classical bluff body shape, a surface mounted cube, with orientations both normal and skewed at $45^{\circ}$ to the incident wind. Full-scale investigations have been undertaken at the Silsoe Research Institute with a 6 m surface mounted cube and a fetch of roughness height equal to 0.01 m. All tests were originally undertaken for a number of turbulence models including the standard, RNG and MMK $k-{\varepsilon}$ models and the differential stress model. The sensitivity of the CFD results to a number of solver parameters was tested. The accuracy of the turbulence model used was deduced by comparison to the full-scale predicted roof and wake recirculation zone lengths. Mean values of the predicted pressure coefficients were used to further validate the turbulence models. Preliminary comparisons have also been made with available published experimental and large eddy simulation data. Initial investigations suggested that a suitable turbulence model should be able to model the anisotropy of turbulent flow such as the Reynolds stress model whilst maintaining the ease of use and computational stability of the two equations models. Therefore development work concentrated on non-linear quadratic and cubic expansions of the Boussinesq eddy viscosity assumption. Comparisons of these with models based on an isotropic assumption are presented along with comparisons with measured data.

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권3호
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

Prediction of Air Movement and Temperature Distribution at Different Store Methods Using 3-D CFD Simulation in Forced-Air Cooling Facility

  • Yang, G.M.;Koh, H.K.
    • Agricultural and Biosystems Engineering
    • /
    • 제3권2호
    • /
    • pp.65-72
    • /
    • 2002
  • Temperature is the most influential environment parameter which affects the quality change of agricultural products in cold storage. Therefore, it is essential to keep the uniform temperature distribution in the storage room. This study was performed to analyze the air movement and temperature distribution in the forced recirculating cold storage facility and to simulate optimum storage method of green groceries using 3-D CFD(three dimensional computational fluid dynamics) computer simulation which applied the standard $textsc{k}$-$\varepsilon$ turbulence model and FVM(finite volume method). The simulation was validated by the experimental results for onion storage and the simulation model was used to simulate the temperature and velocity distribution in the storage room with reference to the change of storage method such as location of storage, no stores, bulk storage, and pallet storage. In case of no stores, internal airflow was circulated without stagnation and consequently air movement and temperature distribution were uniform. In case of bulk storage, air movement was stagnated so much and temperature distribution of onion was not uniform. Furthermore, the inner temperature of onion roses more than the initial temperature of storage. In case of pallet storage, air movement and temperature distribution of onion were so uniform that the danger of quality change was decreased.

  • PDF

Flow models of fluidized granular masses with different basal resistance terms

  • Wu, Hengbin;Jiang, Yuanjun;Zhang, Xuefu
    • Geomechanics and Engineering
    • /
    • 제8권6호
    • /
    • pp.811-828
    • /
    • 2015
  • Proper modelling of the basal resistance terms is key in simulating the motion of fluidized granular flow. In this paper, standard depth-averaged governing equations of granular flow are used together with the classical Coulomb, Voellmy, and velocity dependent friction models (VDFM). A high-resolution modified TVDLF method is implemented to solve the partial differential equations without numerical oscillations. The effects of basal resistance terms on the motion of granular flows such as geometric shape evolution, travel times and final deposits are analyzed. Based on the numerical results, the predictions of the front and rear end positions and developing length of granular flow with Coulomb friction model show excellent agreements with experiment results reported by Hutter et al. (1995), and illustrate the validity of the numerical approach. For the Voellmy model, the higher value of turbulent coefficient than reality may obtain more reasonable predicted runout for the small-scale avalanche or granular flow. The energy exchange laws indicate that VDFM is different from the Coulomb and Voellmy models, although the flow characteristics of both three models fit the measurements and observations very well.

실제 실내 환경에서 이동로봇의 위상학적 위치 추정 (Topological Localization of Mobile Robots in Real Indoor Environment)

  • 박영빈;서일홍;최병욱
    • 로봇학회논문지
    • /
    • 제4권1호
    • /
    • pp.25-33
    • /
    • 2009
  • One of the main problems of topological localization in a real indoor environment is variations in the environment caused by dynamic objects and changes in illumination. Another problem arises from the sense of topological localization itself. Thus, a robot must be able to recognize observations at slightly different positions and angles within a certain topological location as identical in terms of topological localization. In this paper, a possible solution to these problems is addressed in the domain of global topological localization for mobile robots, in which environments are represented by their visual appearance. Our approach is formulated on the basis of a probabilistic model called the Bayes filter. Here, marginalization of dynamics in the environment, marginalization of viewpoint changes in a topological location, and fusion of multiple visual features are employed to measure observations reliably, and action-based view transition model and action-associated topological map are used to predict the next state. We performed experiments to demonstrate the validity of our proposed approach among several standard approaches in the field of topological localization. The results clearly demonstrated the value of our approach.

  • PDF

북미 Tier2 Bin5 규제 대응을 위한 디젤 SCR 개발 (Diesel SCR Development to Meet US Tier2 Bin5 Emission Regulation)

  • 이강원;강중훈;조청훈
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.98-104
    • /
    • 2011
  • The introduction of a diesel engine into the passenger car and light duty applications in the United States involves significant technical challenges for the automotive makers. This paper describes the SCR System optimization procedure for such a diesel engine application to meet Tier2 Bin5 emission regulation. A urea SCR system, a representative $NO_x$ reduction after-treatment technique, is applied to a 3.0 liter diesel engine. To achieve the maximum $NO_x$ reduction performance, the exhaust system layout was optimized using series of the computational fluid dynamics and the urea distribution uniformity test. Furthermore a comprehensive simulation model for the key factors influencing $NO_x$ reduction performance was developed and embedded in the Simulink/Matlab environment. This model was then applied to the urea SCR system and played a key role to shorten the time needed for SCR control parameter calibration. The potential of a urea SCR system for reducing diesel $NO_x$ emission is shown for FTP75 and US06 emission standard test cycle.