• Title/Summary/Keyword: Standard Deviation

Search Result 5,422, Processing Time 0.027 seconds

Mineral Nutrition of the Field-Grown Rice Plant -[I] Recovery of Fertilizer Nitrogen, Phosphorus and Potassium in Relation to Nutrient Uptake, Grain and Dry Matter Yield- (포장재배(圃場栽培) 수도(水稻)의 무기영양(無機營養) -[I] 삼요소이용률(三要素利用率)과 양분흡수량(養分吸收量), 수량(收量) 및 건물생산량(乾物生産量)과(乾物生産量)의 관계(關係)-)

  • Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.16 no.2
    • /
    • pp.99-111
    • /
    • 1973
  • Percentage recovery or fertilizer nitrogen, phosphorus and potassium by rice plant(Oriza sativa L.) were investigated at 8, 10, 12, 14 kg/10a of N, 6 kg of $P_2O_5$ and 8 kg of $K_2O$ application level in 1967 (51 places) and 1968 (32 places). Two types of nutrient contribution for the yield, that is, P type in which phosphorus firstly increases silicate uptake and secondly silicate increases nitrogen uptake, and K type in which potassium firstly increases P uptake and secondly P increases nitrogen uptake were postulated according to the following results from the correlation analyses (linear) between percentage recovery of fertilizer nutrient and grain or dry matter yields and nutrient uptake. 1. Percentage frequency of minus or zero recovery occurrence was 4% in nitrogen, 48% in phosphorus and 38% in potassium. The frequency distribution of percentage recovery appeared as a normal distribution curve with maximum at 30 to 40 recovery class in nitrogen, but appeared as a show distribution with maximum at below zero class in phosphorus and potassium. 2. Percentage recovery (including only above zero) was 33 in N (above 10kg/10a), 27 in P, 40 in K in 1967 and 40 in N, 20 in P, 46 in Kin 1968. Mean percentage recovery of two years including zero for zero or below zero was 33 in N, 13 in P and 27 in K. 3. Standard deviation of percentage recovery was greater than percentage recovery in P and K and annual variation of CV (coefficient of variation) was greatest in P. 4. The frequency of significant correlation between percentage recovery and grain or dry matter yield was highest in N and lowest in P. Percentage recovery of nitrogen at 10 kg level has significant correlation only with percentage recovery of P in 1967 and only with that of potassium in 1968. 5. The correlation between percentage recovery and dry matter yield of all treatments showed only significant in P in 1967, and only significant in K in 1968, Negative correlation coefficients between percentage recovery and grain or dry matter yield of no or minus fertilizer plots were shown only in K in 1967 and only in P in 1968 indicating that phosphorus fertilizer gave a distinct positive role in 1967 but somewhat' negative role in 1968 while potassium fertilizer worked positively in 1968 but somewhat negatively in 1967. 6. The correlation between percentage recovery of nutrient and grain yield showed similar tendency as with dry matter yield but lower coefficients. Thus the role of nutrients was more precisely expressed through dry matter yield. 7. Percentage recovery of N very frequently had significant correlation with nitrogen uptake of nitrogen applied plot, and significant negative correlation with nitrogen uptake of minus nitrogen plot, and less frequently had significant correlation with P, K and Si uptake of nitrogen applied plot. 8. Percentage recovery of P had significant correlation with Si uptake of all treatments and with N uptake of all treatments except minus phosphorus plot in 1967 indicating that phosphorus application firstly increases Si uptake and secondly silicate increases nitrogen uptake. Percentage recovery of P also frequently had significant correlation with P or K uptake of nitrogen applied plot. 9. Percentage recovery of K had significant correlation with P uptake of all treatments, N uptake of all treatments except minus phosphorus plot, and significant negative correlation with K uptake of minus K plot and with Si uptake of no fertilizer plot or the highest N applied plot in 1968, and negative correlation coefficient with P uptake of no fertilizer or minus nutrient plot in 1967. Percentage recovery of K had higher correlation coefficients with dry matter yield or grain yield than with K uptake. The above facts suggest that K application firstly increases P uptake and secondly phosphorus increases nitrogen uptake for dry matter yied. 10. Percentage recovery of N had significant higher correlation coefficient with grain yield or dry matter yield of minus K plot than with those of minus phosphorus plot, and had higher with those of fertilizer plot than with those of minus K plot. Similar tendency was observed between N uptake and percentage recovery of N among the above treatments. Percentage recovery of K had negative correlation coefficient with grain or-dry matter yield of no fertilizer plot or minus nutrient plot. These facts reveal that phosphorus increases nitrogen uptake and when phosphorus or nitrogen is insufficient potassium competatively inhibits nitrogen uptake. 11. Percentage recovery of N, Pand K had significant negative correlation with relative dry matter yield of minus phosphorus plot (yield of minus plot x 100/yield of complete plot; in 1967 and with relative grain yield of minus K plot in 1968. These results suggest that phosphorus affects tillering or vegetative phase more while potassium affects grain formation or Reproductive phase more, and that clearly show the annual difference of P and K fertilizer effect according to the weather. 12. The correlation between percentage recovery of fertilizer and the relative yield of minus nutrient plat or that of no fertilizer plot to that of minus nutrient plot indicated that nitrogen is the most effective factor for the production even in the minus P or K plot. 13. From the above facts it could be concluded that about 40 to 50 percen of paddy fields do rot require P or K fertilizer and even in the case of need the application amount should be greatly different according to field and weather of the year, especially in phosphorus.

  • PDF

The Relations between Financial Constraints and Dividend Smoothing of Innovative Small and Medium Sized Enterprises (혁신형 중소기업의 재무적 제약과 배당스무딩간의 관계)

  • Shin, Min-Shik;Kim, Soo-Eun
    • Korean small business review
    • /
    • v.31 no.4
    • /
    • pp.67-93
    • /
    • 2009
  • The purpose of this paper is to explore the relations between financial constraints and dividend smoothing of innovative small and medium sized enterprises(SMEs) listed on Korea Securities Market and Kosdaq Market of Korea Exchange. The innovative SMEs is defined as the firms with high level of R&D intensity which is measured by (R&D investment/total sales) ratio, according to Chauvin and Hirschey (1993). The R&D investment plays an important role as the innovative driver that can increase the future growth opportunity and profitability of the firms. Therefore, the R&D investment have large, positive, and consistent influences on the market value of the firm. In this point of view, we expect that the innovative SMEs can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. And also, we expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Aivazian et al.(2006) exert that the financial unconstrained firms with the high accessibility to capital market can adjust dividend payment faster than the financial constrained firms. We collect the sample firms among the total SMEs listed on Korea Securities Market and Kosdaq Market of Korea Exchange during the periods from January 1999 to December 2007 from the KIS Value Library database. The total number of firm-year observations of the total sample firms throughout the entire period is 5,544, the number of firm-year observations of the dividend firms is 2,919, and the number of firm-year observations of the non-dividend firms is 2,625. About 53%(or 2,919) of these total 5,544 observations involve firms that make a dividend payment. The dividend firms are divided into two groups according to the R&D intensity, such as the innovative SMEs with larger than median of R&D intensity and the noninnovative SMEs with smaller than median of R&D intensity. The number of firm-year observations of the innovative SMEs is 1,506, and the number of firm-year observations of the noninnovative SMEs is 1,413. Furthermore, the innovative SMEs are divided into two groups according to level of financial constraints, such as the financial unconstrained firms and the financial constrained firms. The number of firm-year observations of the former is 894, and the number of firm-year observations of the latter is 612. Although all available firm-year observations of the dividend firms are collected, deletions are made in the case of financial industries such as banks, securities company, insurance company, and other financial services company, because their capital structure and business style are widely different from the general manufacturing firms. The stock repurchase was involved in dividend payment because Grullon and Michaely (2002) examined the substitution hypothesis between dividends and stock repurchases. However, our data structure is an unbalanced panel data since there is no requirement that the firm-year observations data are all available for each firms during the entire periods from January 1999 to December 2007 from the KIS Value Library database. We firstly estimate the classic Lintner(1956) dividend adjustment model, where the decision to smooth dividend or to adopt a residual dividend policy depends on financial constraints measured by market accessibility. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between current payout rato and target payout ratio each year. In the Lintner model, dependent variable is the current dividend per share(DPSt), and independent variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt). We hypothesized that firms adjust partially the gap between the current dividend per share(DPSt) and the target payout ratio(Ω) each year, when the past dividend per share(DPSt-1) deviate from the target payout ratio(Ω). We secondly estimate the expansion model that extend the Lintner model by including the determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory. In the expansion model, dependent variable is the current dividend per share(DPSt), explanatory variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt), and control variables are the current capital expenditure ratio(CEAt), the current leverage ratio(LEVt), the current operating return on assets(ROAt), the current business risk(RISKt), the current trading volume turnover ratio(TURNt), and the current dividend premium(DPREMt). In these control variables, CEAt, LEVt, and ROAt are the determinants suggested by the residual dividend theory and the agency theory, ROAt and RISKt are the determinants suggested by the dividend signaling theory, TURNt is the determinant suggested by the transactions cost theory, and DPREMt is the determinant suggested by the catering theory. Furthermore, we thirdly estimate the Lintner model and the expansion model by using the panel data of the financial unconstrained firms and the financial constrained firms, that are divided into two groups according to level of financial constraints. We expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, because the former can finance more easily the investment funds through the market accessibility than the latter. We analyzed descriptive statistics such as mean, standard deviation, and median to delete the outliers from the panel data, conducted one way analysis of variance to check up the industry-specfic effects, and conducted difference test of firms characteristic variables between innovative SMEs and noninnovative SMEs as well as difference test of firms characteristic variables between financial unconstrained firms and financial constrained firms. We also conducted the correlation analysis and the variance inflation factors analysis to detect any multicollinearity among the independent variables. Both of the correlation coefficients and the variance inflation factors are roughly low to the extent that may be ignored the multicollinearity among the independent variables. Furthermore, we estimate both of the Lintner model and the expansion model using the panel regression analysis. We firstly test the time-specific effects and the firm-specific effects may be involved in our panel data through the Lagrange multiplier test that was proposed by Breusch and Pagan(1980), and secondly conduct Hausman test to prove that fixed effect model is fitter with our panel data than the random effect model. The main results of this study can be summarized as follows. The determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory explain significantly the dividend policy of the innovative SMEs. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between the current payout ratio and the target payout ratio each year. In the core variables of Lintner model, the past dividend per share has more effects to dividend smoothing than the current earnings per share. These results suggest that the innovative SMEs maintain stable and long run dividend policy which sustains the past dividend per share level without corporate special reasons. The main results show that dividend adjustment speed of the innovative SMEs is faster than that of the noninnovative SMEs. This means that the innovative SMEs with high level of R&D intensity can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. The other main results show that dividend adjustment speed of the financial unconstrained SMEs is faster than that of the financial constrained SMEs. This means that the financial unconstrained firms with high accessibility to capital market can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Futhermore, the other additional results show that dividend adjustment speed of the innovative SMEs classified by the Small and Medium Business Administration is faster than that of the unclassified SMEs. They are linked with various financial policies and services such as credit guaranteed service, policy fund for SMEs, venture investment fund, insurance program, and so on. In conclusion, the past dividend per share and the current earnings per share suggested by the Lintner model explain mainly dividend adjustment speed of the innovative SMEs, and also the financial constraints explain partially. Therefore, if managers can properly understand of the relations between financial constraints and dividend smoothing of innovative SMEs, they can maintain stable and long run dividend policy of the innovative SMEs through dividend smoothing. These are encouraging results for Korea government, that is, the Small and Medium Business Administration as it has implemented many policies to commit to the innovative SMEs. This paper may have a few limitations because it may be only early study about the relations between financial constraints and dividend smoothing of the innovative SMEs. Specifically, this paper may not adequately capture all of the subtle features of the innovative SMEs and the financial unconstrained SMEs. Therefore, we think that it is necessary to expand sample firms and control variables, and use more elaborate analysis methods in the future studies.