• Title/Summary/Keyword: Stand-off Distance

Search Result 63, Processing Time 0.025 seconds

A Study of Explosive Jet-cutting Technology by Linear Shape Charges (성형폭약에 의한 폭발절단기술에 관한 연구)

  • 이병일;박근순;공창식;김광태
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.516-525
    • /
    • 2000
  • Recently, the demand for pollution-free demolition work of old reinforced concrete and steel structure has rapidly increased as the redevelopment of urban area has been accelerated. This study deals with linear shape charges for explosive jet cutting on steel structure. We have tested material and shape of steel structure, characteristics of thickness and strength, shape of linear shape charges, type of shape charges, cumulative charges, type of liner, stand-off distance, detonation method. effect of sound and vibration by air blast in explosive jet cutting method. So, We developed linear shape charges in order to take advantage of optimum explosive jet cutting condition. Shape charges were made of PETN explosives. We obtained the experimental formula to decide the amount of explosive needed for thickness of steel structure plate. There are prospects for application of the explosion curving technology under the open space conditions for dismantling the steel structure and steel bridge, scrapped old boats, which are going out of service.

  • PDF

Effect of Processing Parameters and Powder Size on Microstructures and Mechanical Properties of Y2O3 Coatings Fabricated by Suspension Plasma Spray

  • Kim, Sun-Joo;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.395-402
    • /
    • 2015
  • The suspension plasma spray (SPS) technique has been used to obtain dense $Y_2O_3$ coatings and to overcome the drawbacks of the conventional air plasma spray (APS). SPS uses suspensions containing micrometer or sub-micrometer sized powders dispersed in liquid media. In this study, microstructure developments and mechanical properties have been investigated as functions of particle size of source material and plasma processing parameters such as plasma power and stand-off distance. The microstructure of the coating was found to be highly related to the particle size and the plasma processing parameters, and it was directly reflected in the hardness and the adhesion strength. When fine powder (BET $16.4m^2/g$) was used as a raw material in the suspension, there was, with increasing stand-off distance, a change from a dense structure with a slightly bumpy surface to a porous structure with a cauliflower-like surface. On the other hand, when a coarse powder (BET $2.8m^2/g$) was used, the coating density was lower, with microscopic splats on the surface. Using fine $Y_2O_3$ powders, the coating layer with an optimum short stand-off distance showed a high hardness of approximately 90% of that of sintered $Y_2O_3$ and an adhesion strength several times higher than that of the coating by conventional APS.

A Study on Inelastic Whipping Responses in a Navy Ship by Underwater Explosion (수중 폭발에 의한 함체의 비탄성 휘핑 응답에 관한 연구)

  • Kim, Hyunwoo;Seo, Jae Hoon;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.400-406
    • /
    • 2021
  • The primary effect of the far-field underwater explosion (UNDEX) is the whipping of the ship hull girder. This paper aims to verify why inelastic effects should be considered in the whipping response estimations from the UNDEX simulations. A navy ship was modeled using Timoshenko beam elements over the ship length uniformly keeping the constant midship section modulus. The transient UNDEX pressure was produced using two types of the Geers-Hunter doubly-asymptotic models: compressible and incompressible fluids. Because the UNDEX model based on incompressible fluid assumption provided more increased fluid volume acceleration in the bubble phase, the incompressible fluid-based UNDEX model was adopted for the inelastic whipping response analyses. The non-linear hull girder bending moment-curvature curve was used to embed inelastic effects in the UNDEX analyses where the Smith method was applied to derive the non-linear stiffness. We assumed two stand-off distances to see more apparent inelastic effects: 40.5 m and 35.5 m. In the case of the 35.5 m stand-off distance, there was a statistically significant inelastic effect in terms of the average of peak moments and the average exceeding proportional limit moments. For the conservative design of a naval ship under UNDEX, it is recommended to use incompressible fluid. In the viewpoint of cost-effective naval ship design, the inelastic effects should be taken into account.

COMPUTATIONAL INVESTIGATION OF THE HIGH TEMPERATURE REACTING GAS EFFECTS ON RE-ENTRY VEHICLE FLOWFIELDS (재진입 비행체 외부 열유동장의 고온반응기체 효과에 관한 전산해석)

  • Kang, E.J.;Kim, J.Y.;Park, J.H.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Aerothermodynamic characteristics of re-entry vehicles in hypersonic speed regimes are investigated by applying CFD methods based on the Navier-Stokes-Fourier equations. A special emphasis is placed on the effects of high temperature chemically reacting gases on shock stand-off distance and thermal characteristics of the flowfields. A ten species model is used for describing the kinetic mechanism for high temperature air. In particular, the hypersonic flows around a cylinder are computed with and without chemically reacting effects. It is shown that, when the chemically reacting effects are taken into account, the shock stand-off distance and temperature are significantly reduced.

Experimental Study on the Flyer Velocity in Explosive Welding (폭발용접에서 부재의 충돌속도에 관한 실험적 연구)

  • 문정기;김청균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1423-1430
    • /
    • 1993
  • One of the most important parameters for explosive welding is flyer velocity $V_p$, which principally depends on momentum caused by detonation of explosive. And close dependency with other parameters such as detonation velocity $V_D$, dynamic angle $\beta$, charge ratio R, flyer thickness $t_f$ and stand-off distance d, should be taken accounts for welding design. This paper describes, as a result of experiment, an empirical equation related to relation between $V_p$/$V_D$ and R. The flyer velocity which is estimated by $V_{p}=0.284{\times}R^{0.593}$or $V_{p}=\sqrt[0.2]{2E_G}{\times}R^{0.593}$ can be used in ordinary experiments. And the calculated values of the flyer velocity exhibit better accuracy than those of other investigators.

Studies on Drilling and Cutting Characteristics for Granite Rocks Using Waterjets (워터젯을 이용한 화강암 천공과 절삭 특성에 관한 연구)

  • Oh, Tae-Min;Hong, Eun-Soo;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1338-1345
    • /
    • 2009
  • Although rock excavation is necessary for the effective utilization of urban space, most conventional rock excavation methods, including the blasting method, cause high noise and vibration. Meanwhile, if a high pressure waterjet system is applied to excavate underground spaces in urban areas, the public grievance can be reduced by low noise and vibration. In this study, an abrasive waterjet system is designed and developed to study the influence of various performance parameters such as jet pressure, nozzle traverse speed, stand-off distance, or abrasive feed rate on waterjet excavation performance in laboratory. Using the developed waterjet system, rock drilling characteristics are identified by measuring drilling depths as a function of the jet exposure time. The drilling depth linearly increases with increasing the jet exposure time(under 60sec). Rock cutting characteristics are also obtained with various jet pressures(1600~3200kg/$cm^2$) and nozzle traverse speeds(1.9~14.1mm/s): The cutting depth is nonlinearly related to the jet pressure and traverse speed. Indeed, the cutting depth increases with an increase in the jet pressure and a decrease in the nozzle traverse speed. This trend can be explained by energy transferring/loss mechanism.

  • PDF

A Study on the Optimization of Machining Process for Al6061 Using the AWJM (AWJM을 이용한 Al6061 절단조건 최적화에 관한 연구)

  • Lee, Jae-Kwang;Min, Byeong-Hyeon;Ye, Sang-Don;Jea, Wone-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.65-70
    • /
    • 2006
  • The AWJM(Abrasive Water-jet Machining) technology is one of the cutting technologies, which can cut various materials with 2 or 3 times of the speed of sound. In this study, processing conditions such as jet-pressure, cutting speed, orifice diameter and stand-off distance, are used by following the design of experiments with 3 levels. Al6061 material which is normally applied on the field, is applied. Through the S/N ratio analysis with measured values, the optimization value of processing conditions to minimize the surface roughness and taper value is obtained. The order of significance is as follows; jet pressure, cutting speed, abrasive mixing ratio, orifice diameter and stand-off distance. RSM(Response Surface Method) is applied to find the optimal processing conditions to minimize both the surface roughness and the taper value by using jet pressure, cutting speed and abrasive mixing ratio.

  • PDF

Effect of Impact Angle on the Etching of Glass by Powder Blasting (Powder Blasting 을 이용한 유리의 표면부식시 분사각도의 영향)

  • 김광현;박경호;박동삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.349-354
    • /
    • 2001
  • In this study, we investigated the effect of the impacting ang1e of particles, the scanning times and the stand-off distance on the surface roughness and the weight-loss rate of samples with no mask, and the wall profile and overetching of samples with different mask pattern in powder blasting of soda-lime glass. The varying parameters were the different impact angles between 50$^{\circ}$ and 90$^{\circ}$, scanning times of nozz1e up to 40 and the stand-off distances 70mm and 100mm. The widths of mask pattern were 0.2mm, 0.5mm and 1mm. The powder was alumina sharp particles, WA#600. The mass flow rate of powder during the erosion test was fixed constant at 175g/min and the blasting pressure of powder at 0.2MPa

  • PDF

Micromachining of Pyrex Class for Accelerometer (가속도 센서용 파이렉스 유리의 미세가공)

  • 김광현;최영현;최종순;박동삼;유우식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.268-273
    • /
    • 2002
  • The mechanical etching technique has recently been developed to a powder blasting technique for various materials, capable of producing micro structures larger than 100$\mu\textrm{m}$. This paper describes the performance of powder blasting technique in micromachining of pyrex for the accelerometer sensor and the effect of the number of nozzle scanning and the stand-off distance on the erosion depth.

  • PDF

Effect of one way reinforced concrete slab characteristics on structural response under blast loading

  • Kee, Jung Hun;Park, Jong Yil;Seong, Joo Hyun
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.277-283
    • /
    • 2019
  • In evaluating explosion-protection capacity, safety distance is broadly accepted as the distance at which detonation of a given explosive causes acceptable structural damage. Safety distance can be calculated based on structural response under blast loading and damage criteria. For the applicability of the safety distance, the minimum required stand-off distance should be given when the explosive size is assumed. However, because of the nature of structures, structural details and material characteristics differ, which requires sensitivity analysis of the safety distance. This study examines the safety-distance sensitivity from structural and material property variations. For the safety-distance calculation, a blast analysis module based on the Kingery and Bulmash formula, a structural response module based on a Single Degree of Freedom model, and damage criteria based on a support rotation angle were prepared. Sensitivity analysis was conducted for the Reinforced Concrete one-way slab with different thicknesses, reinforcement ratios, reinforcement yield strengths, and concrete compressive strengths. It was shown that slab thickness has the most significant influence on both inertial force and flexure resistance, but the compressive strength of the concrete is not relevant.