• Title/Summary/Keyword: Stand-alone inverter

Search Result 65, Processing Time 0.048 seconds

A Study on PWM Converter and Inverter Drive System by a Fuel Cell Simulator (연료전지용 Simulator에 의한 PWM 컨버터/인버터 구동시스템에 관한 연구)

  • Gu J.S.;Lee T.W.;Kim J.T.;Won C.Y.;Kim C.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.701-706
    • /
    • 2003
  • Fuel cell is remarkable for one of the clean energy recently. But in the fuel cell case, it has characteristics with low voltage and high current. Therefore, for using domestic power, it should be changed to the power source with commercial voltage and frequency. In this paper fuel cell simulator having electrical characteristics is designed and constructed instead of fuel cell stack. Voltage generated from fuel cell is from 39V to 72V dc and should be boosted to 400v do for home appliances. A stand alone system including the inverter and DC/DC converter for the fuel cell is then proposed. Experimental result is used to support the analysis.

  • PDF

Seamless Mode Transfer of Indirect Current Controlled Parallel Grid-Connected Inverters (간접전류제어방식 병렬형 계통연계 인버터의 무순단 모드절환)

  • Song, Injong;Choi, Junsoo;Lim, Kyungbae;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.334-341
    • /
    • 2019
  • This study proposes the control strategy for the seamless mode transfer of indirect current controlled parallel grid-connected inverters. Under the abnormal grid condition, the grid-connected inverter can convert the operation mode from grid-connected to stand-alone mode to supply power to the local load. For a seamless mode transfer, the time delay problems caused by the accumulated control variable error must be solved, and the indirect current control method has been applied as one of the solutions. In this study, the design of control parameters for the proportional-resonant-based triple-loop indirect current controller and the control strategy for the seamless mode transfer of parallel grid-connected inverters are described and analyzed. The validity of the proposed mode transfer method is verified by the PSiM simulation results.

A Flyback-Assisted Single-Sourced Photovoltaic Power Conditioning System Using an Asymmetric Cascaded Multilevel Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2272-2283
    • /
    • 2016
  • This paper proposes a power conditioning system (PCS) for distributed photovoltaic (PV) applications using an asymmetric cascaded multilevel inverter with a single PV source. One of the main disadvantages of the cascaded multilevel inverters in PV systems is the requirement of multiple isolated DC sources. Using multiple PV strings leads to a compromise in either the voltage balance of individual H-bridge cells or the maximum power point tracking (MPPT) operation due to localized variations in atmospheric conditions. The proposed PCS uses a single PV source with a flyback DC-DC converter to facilitate a reduction of the required DC sources and to maintain the voltage balance during MPPT operation. The flyback converter is used to provide input for low-voltage H-bridge cells which processes only 20% of the total power. This helps to minimize the losses occurring in the proposed PCS. Furthermore, transient analyses and controller design for the proposed PCS in both the stand-alone mode and the grid-connection mode are presented. The feasibility of the proposed PCS and its control scheme have been tested using a 1kW hardware prototype and the obtained results are presented.

A SRF Power Flow Control Method for Grid-Connected Single-Phase Inverter Systems (단상 계통연계 인버터의 SRF 전력제어 방법)

  • Park, Han-Eol;Kim, Eun-Seok;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • It is well known that distributed generation(DG) system using renewable energy is an alternative to solve the problems which result from the exhaustion of fossil fuel and the environmental pollution. A PWM inverter is required for a power flow control in the DG systems. This paper proposes a SRF power flow control method considering grid impedance in grid-connected single-phase inverter systems. The proposed SRF power flow control method can provide a voltage-reference for the single-phase inverter even without any grid impedance estimation so that the single-phase inverter system could operate in stand-alone mode and grid-connected mode based on the known nominal value of grid impedance. Also independent controls of active and reactive power are achieved by the proposed control method. The effectiveness and the validity of the proposed control method are demonstrated through simulations. The simulation results show that the proposed control method can control properly power flow in grid-connected single-phase inverter systems.

Parallel Operation Control Method of Grid-connected Inverters with Seamless Transfer for Energy Storage System in Microgrid (마이크로그리드에서 에너지 저장시스템을 위한 무순단 절체 기능을 갖는 계통연계형 인버터의 병렬운전 제어기법)

  • Park, Sung-Youl;Kim, Joo-Ha;Jung, Ah-Jin;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2016
  • In the microgrid, inverters for energy storage system are generally constructed in a parallel structure because of capacity expandability, convenience of system maintenance, and reliability improvement. Parallel inverters are required to provide stable voltage to the critical load in PCC and to accurately share the current between each inverter. Furthermore, when islanding occurs, the inverters should change its operating mode from grid-connected mode to stand-alone mode. However, during clearing time and control mode change, the conventional control method has a negative impact on the critical load, that is, severe fluctuating voltage. In this study, a parallel operation control method is proposed. This method provides seamless mode transfer for the entire transition period, including clearing time and control mode change, and has accurate current sharing between each inverter. The proposed control method is validated through simulation and experiment.

Power Control and Dynamic Performance Analysis of a Grid-Interactive Wind/PV/BESS Hybrid System (계통연계형 풍력, 태양광 및 축전지 하이브리드 시스템의 출력제어 및 동특성 해석)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Cho, Chang-Hee;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.317-324
    • /
    • 2007
  • Most conventional hybrid systems using renewable energy sources have been applied for stand-alone operation, but Utility-interface may be an useful and viable option for hybrid systems. Grid-connected operation may have benefits such as reduced losses in power system distribution, utility support in demand side management, and peak load shaving. This paper addresses power control and dynamic performance of a grid-connected PV/wind/BESS hybrid system. At all times the PV way and the wind turbine are individually controlled to generate the maximum energy from given weather conditions. The battery energy storage system (BESS) charges or discharges the battery depending on energy gap between grid invertger generation and production from the PV and wind system. The BESS should be also controlled without too frequently repeated shifts in operation mode, charging or discharging. The grid inverter regulates the generated power injection into the grid. Different control schemes of the grid inverter are presented for different operation modes, which include normal operation, power dispatching, and power smoothing. Simulation results demonstrate that the effectiveness of the proposed power control schemes for the grid-interactive hybrid system.

Control and Operating Modes of Battery Energy Storage System for a Stand-Alone Microgrid with Diesel Generator (디젤발전기가 포함된 독립형 마이크로그리드에서의 BESS 제어기법 및 운전모드 연구)

  • Jo, Jongmin;An, Hyunsung;Kim, Jichan;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.86-93
    • /
    • 2018
  • In this work, control methods and operating modes are proposed to manage standalone microgrid. A standalone microgrid generally consists of two sources, namely, battery energy storage system (BESS) and diesel generator (DG). BESS is the main source that supplies active and reactive power regardless of load conditions, whereas DG functions as an auxiliary power source. BESS operates in a constant voltage constant frequency (CVCF) control, which includes proportional-integral + resonant controller in a parallel structure. In CVCF control, the concept of fundamental positive and negative transformation is utilized to generate a three-phase sinusoidal voltage under imbalanced load condition. Operation modes of a standalone microgrid are divided into three modes, namely, normal, charge, and manual modes. To verify the standalone microgrid along with the proposed control methods, a demonstration site is constructed, which contains 115 kWh lead-acid battery bank, 50 kVA three-phase DC - AC inverter, and 50 kVA DG and controllable loads. In the CVCF control, the total harmonic distortion of output voltage is improved to 1.1% under imbalanced load. This work verifies that the standalone microgrid provides high-quality voltage, and three operation modes are performed from the experimental results.

Optimized LCL filter Design Method of Utility Interactive Inverter with grid-tied and stand-alone Operations (계통연계 및 독립운전을 하는 계통연계 인버터의 LCL필터 최적 설계기법)

  • Jung, Sanghyuk;Kim, Hyungjin;Choi, Sewan;Kim, Taehee;Lee, Gipung;Lee, Taewon
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.65-66
    • /
    • 2011
  • 독립부하가 존재하는 계통연계 인버터에서 LCL필터 설계시 계통으로 주입하는 전류뿐만 아니라 독립부하 전압품질도 고려되어야 한다. 또한, LCL필터의 가격과 부피측면을 고려하여 고조파 감쇠율은 기준을 만족하면서 인덕턴스와 캐패시턴스는 가능한 작게 설계하는 것이 중요하다. 본 논문에서는 계통전류의 고조파 기준은 만족하고, LCL필터 모델로부터 구해지는 전달함수를 이용하여 계통연계시와 독립운전시 모두 독립부하의 전압품질이 만족하도록 필터설계를 한다. 또한, 독립부하 전압리플, 인덕터 부피, 무효전류량, 시스템 대역폭에 가중치를 적용한 LCL필터 최적설계 방법을 제안한다.

  • PDF

CVCF Control of Stand-Alone Wind Power System (독립형 풍력발전 시스템의 CVCF 제어)

  • Kim H.K.;Abo-Khalil Ahmed;Lee D.C.;Seok J.K.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.379-382
    • /
    • 2003
  • In this paper, a novel nonlinear control method of the CVCF(constant voltage and constant frequency output voltage for the three-phase PWM inverter is proposed, which gives high dynamic responses at load variation as well as zero steady-state error. The experimental results are shown th verify the validity of the proposed scheme.

  • PDF

Stand-alone fuel cell inverter system using CRA controller (CRA 제어기를 이용한 독립형 연료전지 인버터 시스템)

  • Park, Ga-Woo;Lee, Jin-Mok;Jung, Hun-Sun;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1053-1054
    • /
    • 2006
  • 독립형 연료전지 전력변환 시스템에서 인버터는 출력주파수의 2배 성분의 리플을 가지고 있기 때문에 직류버스 전압에도 이 주파수 성분이 존재하게 된다. 이 리플 전류는 연료전지의 수명과 효율을 저하시키므로 제어기를 통해 줄여야 한다. 최근 특성비 지정법을 이용하여 해석적으로 기어기를 설계하는 방법이 제안되었다. 해석적인 방법으로 연료전지 인버터의 제어기를 설계한다. 이 제어기는 부하 변동에 대해서 응답속도가 빠르며 120 Hz 리플에 강인함을 확인한다.

  • PDF