• Title/Summary/Keyword: Stand-Alone System

Search Result 455, Processing Time 0.032 seconds

Functional Properties of Stand-alone Microgrid EMS Application (에너지 자립섬 EMS 어플리케이션의 기능적 특성)

  • Lee, Ha-Lim;Chun, Yeong-Han;Chae, Wookyu;Park, Jungsung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.115-119
    • /
    • 2016
  • For many past years, research in the operation of stand-alone Microgrid, which provides electric power generated from renewable energy sources and energy storage system instead of diesel generators, has been a major issue in order to prepare the exhaustion of fossil fuel and to protect environment, in island grids. Samso Island, known as the world's first stand-alone Microgrid in Denmark, is connected to the mainland grid through AC system, which has different technical conditions with Korea's isolated power system. Korea's first stand-alone Microgrid has been built in Ga-sa island, Chun-la-nam-do, based on Energy Management System (EMS) operation, and other islands are under construction to follow the next step. These stand-alone Microgrid's has large capacity of Battery Energy Storage System (BESS) and the proportion of the renewable energy sources are large, which makes it necessary to use a Microgrid-Energy Management System (MG-EMS) to operate the grid effectively and economically. However, since the main subject of MG-EMS is different from EMS, specific characteristics and functions must be different as well. In this paper, the necessary characteristics and functions are explained for a general MG-EMS compared to a large power system EMS.

Design and implementation of IoT based controllers and communication module interfaces for stand-alone solar system

  • Lee, Yon-Sik;Mun, Young-Chae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.129-135
    • /
    • 2019
  • This paper is part of research and development for stand-alone solar system without commercial power supply. It implements firmware of controller for operation of stand-alone solar system by applying IoT technology and also develops communication modules that allow multiple solar lamps to send and receive data through wireless network. The controller of the developed stand-alone solar system can effectively charge the power generated by the solar module, taking into account the battery's charge and discharge characteristics. It also has the advantage of attaching wireless communication modules to solar lamp posts to establish wireless communication networks without incurring communication costs. In addition, by establishing IoT gateway middleware platform for each installation site, it forms a foundation to operate multiple solar lamp posts into multiple clusters. And, it is expected that the data collected in each cluster will be used to enable configuration and control of operational information, thereby inducing convenience and efficiency of remote operation and management.

Coordinated Droop Control for Stand-alone DC Micro-grid

  • Kim, Hyun-Jun;Lee, Yoon-Seok;Kim, Jae-Hyuk;Han, Byung-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1072-1079
    • /
    • 2014
  • This paper introduces a coordinated droop control for the stand-alone DC micro-grid, which is composed of photo-voltaic generator, wind power generator, engine generator, and battery storage with SOC (state of charge) management system. The operation of stand-alone DC micro-grid with the coordinated droop control was analyzed with computer simulation. Based on simulation results, a hardware simulator was built and tested to analyze the performance of proposed system. The developed simulation model and hardware simulator can be utilized to design the actual stand-alone DC micro-grid and to analyze its performance. The coordinated droop control can improve the reliability and efficiency of the stand-alone DC micro-grid.

Real-time Operation Analysis for Stand-alone Microgrid using RTDS (RTDS를 이용한 독립형 마이크로그리드의 실시간 동작 분석)

  • Lee, Yoon-Seok;Han, Byung-Moon;Won, Dong-Jun;Lee, Hak Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1393-1401
    • /
    • 2014
  • In this paper the operational characteristics of stand-alone microgrid was analyzed using RTDS simulation models. The accuracy of developed simulation models were verified by comparing with the analysis results using the PSCAD/EMTDC simulation models. The proper scenarios and operation algorithms were developed and analyzed in accordance with various situations that can occur in the actual system, so as to establish operation scheme for the stand-alone microgrid system. The developed simulation models can be effectively utilized to design a newly installed stand-alone microgrid and to develop various operation scenarios for stand-alone microgrid. And these models can be applied for analyzing the transient phenomena due to system fault so that system protection can be properly designed.

The Design and Implementation of a Network-based Stand-alone Motion System

  • Cho, Myoung-Chol;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.865-870
    • /
    • 2003
  • A motion controller has been used variously in industry such as semiconductor manufacture equipment, industrial robot, assembly/conveyor line applications and CNC equipment. There are several types of controller in motion control. One of these is a PC-based motion controller such as PCI or ISA, and another is stand-alone motion controller. The PC bus-based motion controller is popular because of improving bus architectures and GUI (Graphic User Interface) that offer convenience of use to user. There are some problems in this. The PC bus-based solution allows for only one of the form factors, so it has a poor flexibility. The overall system package size is bigger than other motion control system. And also, additional axes of control require additional slot, however the number of slots is limited. Furthermore, unwieldy and many wirings come to connect plants or I/O. The stand-alone motion controller has also this limit of axes of control and wiring problems. To resolve these problems, controller must have capability of operating as stand-alone devices that resides outside the computer and it needs network capability to communicate to each motion device. In this paper, a network-based stand-alone motion system is proposed. This system integrates PC and motion controller into one stand-alone motion system, and uses CAN (Controller Area Network) as network protocol. Single board computer that is type of 3.5" FDD form factor is used to reduce the system size and cost. It works with Windows XP Embedded as operating system. This motion system operates by itself or serves as master motion controller that communicates to slave motion controller. The Slave motion controllers can easily connect to master motion system through CAN-network.

  • PDF

Seamless Transfer Operation Between Grid-connected and Stand-Alone Mode in the Three-phase Inverter (3상 인버터의 계통연계 및 독립운전모드 전환 연구)

  • Lee, Wujong;Jo, Hyunsik;Lee, Hak Ju;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • This paper propose seamless transfer operation between grid-connected and stand-alone mode in the three-phase inverter for microgrid. The inverter operates grid-connected mode and stand-alone mode. Grid-connected mode is the inverter connected to grid and stand-alone mode is to deliver energy to the load from inverter at grid fault. When conversion from gird-connected to stand-alone mode, the inverter changes current control to voltage control. When grid restored, the inverter system is conversion from stand-alone to grid-connected mode. In this case, load phase and grid phase are different. Therefore, synchronization is essential. Thus Seamless transfer operation stand-alone to grid-connected mode. In this paper, propose sealmless transfer operation between grid-connceted and stand-alome mode, and this method is verified through simulation and experiment.

Analysis of Voltage Control of Stand-Alone Microgrid for High Quality Power Supply (고품질 전력공급을 위한 독립형 마이크로그리드의 전압제어 해석)

  • Jo, Jongmin;Lee, Hakju;Shin, Chang-hoon;Cha, Hanju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.253-257
    • /
    • 2016
  • This paper analyzes voltage control method in order to supply high-quality power for stand-alone microgrid. Stand-alone microgrid is composed of battery bank, stand-alone PCS and controllable loads. The main role of stand-alone PCS is to supply high-quality power to loads as main source by using stable voltage method regardless of load conditions. In particularly, output voltage of stand-alone PCS gets severely unbalanced voltage under unbalanced loads. Fundamental positive and negative sequences are transformed by two coordinates transformation which are rotated in each opposite direction, respectively. Each fundamental d-q voltage is regulated by each fundamental PI control. In addition, low-order harmonics are compensated through resonant controllers. Performance of stand-alone microgrid is tested for feasibility, and it is verified that output voltage of THD is improved to 1% from 2.2% under 50 kW balanced load, and is improved to 1.1% from 2.6% under 50 kW unbalanced load.

Stand-Alone Pico-Hydro Generation System using a High-Efficiency IPM Synchronous Generator

  • Kurihara, Kazumi;Kubota, Tomotsugu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.121-125
    • /
    • 2014
  • This paper presents a successful stand-alone pico-hydro generation system using a high-efficiency interior permanent-magnet (IPM) synchronous generator. A 1-kW 4-pole V-type IPM generator with low voltage regulation is used for laboratory test in stand-alone hydro energy conversion system. It has been found from experimental results that the constant output voltage is supplied stably by the proposed system under wide speed range.

A Hierarchical Motion Controller for Soccer Robots with Stand-alone Vision System (독립 비젼 시스템 기반의 축구로봇을 위한 계층적 행동 제어기)

  • Lee, Dong-Il;Kim, Hyung-Jong;Kim, Sang-Jun;Jang, Jae-Wan;Choi, Jung-Won;Lee, Suk-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.133-141
    • /
    • 2002
  • In this paper, we propose a hierarchical motion controller with stand-alone vision system to enhance the flexibility of the robot soccer system. In addition, we simplified the model of dynamic environments of the robot using petri-net and simple state diagram. Based on the proposed model, we designed the robot soccer system with velocity and position controller that includes 4-level hierarchically structured controller. Some experimental results using the stand-alone vision system from host system show improvement of the controller performance by reducing processing time of vision algorithm.

Modelling a Stand-Alone Inverter and Comparing the Power Quality of the National Grid with Off-Grid System

  • Algaddafi, Ali;Brown, Neil;Rupert, Gammon;Al-Shahrani, Jubran
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Developments in power electronics have enabled the widespread application of Pulse Width Modulation (PWM) inverters, notably for connecting renewable systems to the grid. This study demonstrates that a high-quality power can be achieved using a stand-alone inverter, whereby the comparison between the power quality of the stand-alone inverter with battery storage (off-grid) and the power quality of the utility network is presented. Multi-loop control techniques for a single phase stand-alone inverter are used. A capacitor current control is used to give active damping and enhance the transient and steady state inverter performance. A capacitor current control is cheaper than the inductor current control, where a small current sensing resistor is used. The output voltage control is used to improve the system performance and also control the output voltage. The inner control loop uses a proportional gain current controller and the outer loop is implemented using internal model control proportional-integral-derivative to ensure stability. The optimal controls are achieved by using the Sisotool tool in MATLAB/Simulink. The outcome of the control scheme of the numerical model of the stand-alone inverter has a smooth and good dynamic performance, but also a strong robustness to load variations. The numerical model of the stand-alone inverter and its power quality are presented, and the power quality is shown to meet the IEEE 519-2014. Furthermore, the power quality of the off-grid system is measured experimentally and compared with the grid power, showing power quality of off-grid system to be better than that of the utility network.