• Title/Summary/Keyword: Stand digital signal

Search Result 28, Processing Time 0.029 seconds

Stand-Alone PV System by Parallel Operation Control of Current-Source Inverter without Battery (전류원 인버터의 병렬운전에 의한 축전지 없는 태양광 시스템의 구성)

  • 박성준;김종달
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.291-297
    • /
    • 2003
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 [W] prototype equipped with digital signal processor TMS320F241.

Digital Controller Candidate for Point-of-load Synchronous Buck Converter in Tri-mode Mechanism

  • Xiu, Li-Mei;Zhang, Wei-Ping;Li, Bo;Liu, Yuan-Sheng
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.796-805
    • /
    • 2014
  • A digital controller with a low-power approach for point-of-load synchronous buck converters is discussed and compared with its analog counterpart to confirm its feasibility for system integration. The tri-mode digital controller IC in $0.35{\mu}m$ CMOS process is presented to demonstrate solutions that include a PID, quarter PID, and robust RST compensators. These compensators address the steady-state, stand-by, and transient modes according to the system operating point. An idle-tone free condition for ${\Sigma}-{\Delta}$ DPWM reduces the inherent tone noise under DC-excitation. Compared with that of the traditional approach, this condition generates a quasi-pure modulation signal. Experimental results verify the closed-loop performances and confirm the power-saving mechanism of the proposed controller.

Design of a biped robot using DSP and FPGA

  • Oh, sung-nam;Seo, jae-kwan;Lee, sung-ui;Kim, tab-il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.84.5-84
    • /
    • 2002
  • In order to be a stand-alone structure, a biped robot should be designed of the effective mechanic structure and the smaller hardware system. This paper shows the design methodology of a biped robot controller using FPGA(Field Programmable Gate Array). A hardware system consists of DSP(Digital Signal Processor) as the main CPU and FPGA as the motor controller...

  • PDF

A DSP based Three Phase Power Quality Analyzer for Motor Drives (모터 구동장치를 위한 DSP기반 3상 전력품질분석 시스템)

  • 김우용;정영국;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • This paper presents a digital instrument for a DSP based power quality analysis in three phase power system where current waveform is non-sinusoidal. it is based on stand alone type TMS320C31 DSP(digital signal processor)board and on a special high-speed data acquisition system. Power quality of low power motor drives are analyzed and processed by using a simple average power algorithm, and result of power analysis are displayed by LCD in the proposed system. This paper also goes on to discuss the performance of an instrument prototype, both in terms of accuracy and speed of measurement under the transient and steady state condition.

  • PDF

Speed Control of Induction Motor Systems by Design Method of Digital Servo System (디지탈 서보계 설계법에 의한 유도 전동기 시스템의 속도 제어)

  • 김상봉;김환성;이동철;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.50-59
    • /
    • 1992
  • The paper presents a digital speed control approach of induction motor systems by using a digital servo control method and a well-known second order differential equation as model. The basic concept of using the modeling equation stated in the above is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc, just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. Futhermore, the proposed speed control system can be treated as a single input and single output system. The effectiveness of the servo control system obtained by the above-mentioned design concept is illustrated by the experimental results in the presence of both step reference changes and load variations. It is observed from the experimental results that the steady state-error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal changes and load variations.

  • PDF

Speed Control of Induction Motor Systems by a Digital Redesign Method (디지털 재설계법에 의한 유도 전동기 시스템의 속도제어)

  • 이동철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.27-38
    • /
    • 1992
  • The paper presents a digital speed control approach of induction motor systems by using a digital redesign method and adopting a well known 2nd order model as the system model equation. The basic concept using the modeling equation is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc. just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. The effectiveness of the servo control system composed by the above mentioned design concept is illustrated by the experimental results in the presence of step reference change and generator load variation. It is observed from the experimental results that the steady state error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal change and load variation of generator.

  • PDF

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2195-2196
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.563-564
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server Fourth one was device solver. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this Property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1229-1230
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer in main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1689-1690
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF