• Title/Summary/Keyword: Stall Control

Search Result 110, Processing Time 0.026 seconds

Effects of Pulsating Jet Blowing on Stall Control of Two Dimensional Elliptic Airfoil (이차원 타원형 날개꼴의 실속제어에서 간헐제트 브로잉의 효과)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jeong, Hung-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.1-8
    • /
    • 2005
  • This paper explored the effects of separation control through the use of pulsating jet blowing on a two dimensional elliptical airfoil. To develop an active control technique of flow separation, a flow control actuator utilizing continuous/pulsed jet of pressurized air was designed and installed in a wind tunnel testing model of elliptic wing. PIV measurement and flow visualization of the wing near field were conducted to access the feasibility and effectiveness of the pulsed jet blowing on controlling the stall of the elliptical wing in subsonic flow. PIV experimental results show that separation control can provide significant reduction in turbulent flow wake and separation bubbles by jet blowing. The pulsating jet blowing is more effective on the separation control than continuous one. Increased jet frequency suppressed the turbulent separated flow wake effectively at even higher AOAs.

A Development of Constant Power Controller of Induction Generator for Wind Power System (풍력 발전용 유도 발전기를 위한 정출력 제어기 개발)

  • Kim, Rae-Young;Cha, Jong-Whan;Song, Jong-Whan;Oh, Si-Doek
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1367-1369
    • /
    • 2002
  • The pitch and stall schemes have some problems such as, mechanical stress, tear and wear on the transmission line, noise emission and disturbance to the grid, due to a delaying factor of mechanical process. In this paper, a novel control is developed. It serves to compensate delaying of pitch or stall schemes and allows the generate power to control in fast response. The validity of the proposed control scheme is verified by experiment results with the actual 660KW wind power system model.

  • PDF

Development of Control Logic for Operation of Fan Stall Warning Equipment Used in Coal-Thermal Power Plant (석탄 화력발전소 송풍기 맥동감시장치 운전을 위한 제어로직 개발)

  • Roh, Yong-Gi;Cho, Hyun-Seob;Jang, Seong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.837-846
    • /
    • 2006
  • In this paper, axial flow fans which applied at coal-thermal power plant(500[MW]) cause a unique phenomenon called 'Stall' under normal operation and this causes abnormal operation and damages the blades. In order to prevent these abnormal operation, this study estimates the reliability of new system which is applying control logic on each parameter with existing black-box-type by field test.

  • PDF

Sensorless Position Control of DC Motor for the Auxiliary Scaffolding (차량용 보조발판의 센서리스 직류전동기 위치 제어)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.389-395
    • /
    • 2019
  • This paper presents the sensorless position control of an auxiliary scaffolding step system for vehicles using DC motors. The designed auxiliary scaffolding step has a mechanical protector at the stop position. At this position, the scaffolding is forcibly stopped by the mechanical protector, and the motor current is dramatically increased to the stall current of the DC motor, thereby increasing the electrical damage. In this study, the estimated back EMF- and current model-based observers are proposed to estimate the motor speed and stop position. A simple V/F acceleration voltage pattern is used to operate the auxiliary scaffolding system. The estimated moving position is adopted to determine the stop position of the DC motor with the load current state. The operating current of the DC motor can be reduced by the estimated moving position and V/F acceleration pattern. At the stop position, the proposed sensorless position controller can smoothly stop the DC motor with the estimated moving position and reduced load current without any mechanical and electrical stress from the stall current from the mechanical protector. The proposed control scheme is verified by the comparison of simulations and experiments.

Tail Sizing of 95-Seat Type Turboprop Aircraft (95인승급 터보프롭 중형항공기 꼬리날개 사이징)

  • Lee, Jangho;Kang, Youngsin;Bae, Hyogil;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.15-19
    • /
    • 2013
  • Tail wing is important to designing of civil aircrafts, because it is responsible for aircraft stability and control. Tail wing has a role in aircraft control and makes aircraft fly stably without any pilot control input. Also, designing of tail wing determine trim drag force in whole aircraft. Center of gravity(CG) of aircraft travels with various effects as placement of passenger's seats, location of cargo bay, etc. In designing horizontal tail volume, aircraft CG travel has to be considered to have margin so that it should be sized to provide adequate stability and control for the airplane's entire CG range throughout the flight envelope. Finally, it is essential to have sufficient elevator control to perform stall at forward CG for all flaps down configurations. Such stalls establish the FAR stall speed which airplane take-off and landing performance. This paper deals with the process for tail wing design regarding the aircraft CG travel and results for 95-seat type turboprop aircraft.

A Study on the Instabilities of the Centrifugal Compressor with Variable Diffuser (가변 디퓨저를 장착한 원심 압축기 불안정성 연구)

  • Cha, Bong-Jun;Im, Byeong-Jun;Yang, Su-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1123-1131
    • /
    • 2002
  • An experimental study on the performance and instability development characteristics of a centrifugal compressor equipped with a cambered variable diffuser has been performed with varying diffuser vane angles. The test was conducted at the design speed of 20,800 rpm and the 80% design speed of 16,640 rpm for 5 diffuser angles : 65$^{\circ}$, 70$^{\circ}$, 75$^{\circ}$, 77.5$^{\circ}$, 80$^{\circ}$ The steady performance test results showed that choking mass flow rate decreases and total pressure ratio increases with a narrowed surge margin as the diffuser vane angle increases. Unsteady pressures were measured using high-frequency pressure transducers at the inducer and the diffuser throat to investigate the instability phenomena such as rotating stall and surge inside the compressor. From the unsteady measurements, it is found that the transient process from rotating stall to surge was mainly affected by diffuser angles. The results of the present study can be applied to the instability control of the centrifugal compressors using a variable diffuser.

Technique for Using Fly Ash as a Bedding Materials at Livestock House (석탄회의 축사 깔짚 이용기술)

  • 고영두;김재황;김두환;고병두;이수칠;이종찬;김삼철
    • Journal of Animal Environmental Science
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • This study was carried out to improve utilization of substitute fly-ash in bedding material of animal waste treatments. The amount used of fly-ash used in a pigpen or beef stall was 50% lower than that of existing bedding material of animal waste treatments. From the results, substitution effect of fly-ash put over the floor of the stable became much better. Effects of processed fly ash as a spread straw decreased ammonia(NH3) and Hydrogensulfide (H2S) gas at beef stall, but there was no benefit of replacement terms. Effect of processed fly ash as a spread straw increased 4∼5 times replacement terms more than control NH3 and H2S gas was decreased. A lot of maggots and porasites were grown at sawdust pig farm, but fly ash inhibited to grow maggots and paraeters. In conclusion, as substituting fly-ash for 5% sawdust(DM basis) in making animal waste into a compost with fly ash, we can reduce the sawdust purchasing costs and produce the high quality of a compost, especially a pollutant as NH3 and H2S gas, etc. from the process of biodegradation, and as substituting fly-ash(1,540 won per ton ; can be extended the replacement period of spreading straw approximatively 4∼5 times) for sawdusts(111,000 won per ton) will increase a real income in livestock house.

Software Development for the Performance Evaluation and Blade Design of a Pitch-Controlled HAWT based on BEMT (날개요소 운동량 이론을 이용한 피치제어형 수평축 풍력터빈 블레이드 설계 및 성능평가 소프트웨어 개발)

  • Mo, Jang-Oh;Kim, Bum-Suk;Kim, Mann-Eung;Choi, Young-Do;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • The purpose of this study is to develop a software for the performance evaluation and blade design of a pitch-controlled HAWT using BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. The HERACLES V2.0 software consist of three major part ; basic blade design, aerodynamic coefficient mapping and performance calculation including stall or pitch control option. A 1MW wind turbine blade was designed at the rated wind speed(12m/s) composing five different airfoils such as FFA-W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power predicted by BEMT at the rated wind speed is about 1.27MW. Also, CFD analysis was performed to confirm the validity of the BEMT results. The comparison results show good agreement about the error of 6.5% in rated mechanical power.

Flow Control on Wind Turbine Airfoil with a Vortex Cell (와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어)

  • Kang, Seung-Hee;Kim, Hye-Ung;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.405-412
    • /
    • 2012
  • A flow control on airfoil installed a vortex cell for high efficiency wind turbine blade in stationary and dynamic stall conditions have been numerically investigated by solving the compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with Roe's flux-difference splitting and an implicit time-integration method coupled with dual time step sub-iteration. The computed result for the airfoil in the stationary showed that lift-drag ratio increases due to low pressure by the vortex cell. The oscillating airfoil with the vortex cell showed that the magnitude of hysteresis loop is reduced due to the enhanced vortex in the cell.

A Study on the Design and Validation of Automatic Pitch Rocker for the Aircraft Deep Stall Recovery (항공기의 실속 회복을 위한 자동 회복 장치 설계 및 검증에 관한 연구)

  • Hahn, Seong-Ho;Hwang, Byung-Moon;Lee, Young-Ho;Lee, Dong-Kyu;Ahn, Sung-Jun;Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2007
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). Limit value of aircraft entering into the departure in HAoA is related to aircraft configuration design. But, the control law such as AoA and yaw-rate limiter is implemented in digital Fly-By-Wire flight control system of supersonic jet fighter to guarantee the aircraft's safety in HAoA. The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist AoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. This paper addresses the design and validation of APR(Automatic Pitch Rocker) control law instead of MPO in order to automatic recovery without manual pitch rocking by the pilot. And, recovery characteristic with APR verifies by the nonlinear analysis and pilot evaluation.