• Title/Summary/Keyword: Stall Angle

Search Result 102, Processing Time 0.025 seconds

SEPARATION CONTROL USING SYNTHETIC JET ON NACA23012 AT HIGH ANGLE OF ATTACK (고받음각의 NACA23012익형에서 synthetic jet을 이용한 박리 제어 연구)

  • Kim S. H.;Kim C.;Kim K. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.125-129
    • /
    • 2005
  • Flow control has been performed using synthetic jet on NACA23012. In order to improve aerodynamic performance, synthetic jet is located near separation paint on airfoil with leading edge droop and plain flap. The flow control using synthetic jet shows that stall characteristics and control surface performance can be improved through resizing separation vortices. Stall is delayed and stall characteristics are improved when synthetic jet is applied from separation region of leading edge droop. Control surface effectiveness is increased and lift is increased when synthetic jet applied at the flap leading edge region. The results show that aerodynamic characteristics can be improved through leading edge droop with synthetic jet at near separation and plain flap with synthetic jet at the flap leading edge. The combination of synthetic jet and simple high lift device is as good as fowler flap system.

  • PDF

Influence of the impeller inlet angles on flow pattern and characteristics of mixed-flow pump (사류 임펠러의 입구각 변화가 내부유동 및 펌프특성에 미치는 영향)

  • Lee, Seon-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1034-1045
    • /
    • 1997
  • For the improvement of the pump characteristics in the partial capacity range, it must be verified that the influence of the impeller design factor on the internal flows and the influence of the impeller internal flows on the pump characteristics. In this paper, in order to understand the influence of inlet angles on flow conditions and characteristics of a mixed flow pump, experiments were carried out for three kinds of impeller, which have the same outlet angle distributions and meridional section shapes. Results show that separation and stall in the partial capacity range can be controlled by the inlet angles. The relationship between the separation - stall at the impeller leading edge and the discharge flow conditions is clarified.

Effect of Reduced Frequency on the Flow Pattern of Pitch Oscillating Elliptic Airfoil (피치 진동하는 타원형 에어포일의 환산주파수가 날개 주위 유동패턴에 미치는 영향)

  • Lee, Ki-Young;Chung, Hyong-Seok;Sohn, Myong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.128-136
    • /
    • 2006
  • The purpose of this paper is to examine the dynamic stall characteristics of an elliptic airfoil when subject to constant pitch motions. In this study, which was motivated by the pressing need for a greater understanding of the reduced frequency$({\kappa})$ effects on flow patterns of elliptic airfoil, the various reduced frequencies were considered. The result confirms that the reduced frequency has a profound effects on the flow patterns. The increase of ${\kappa}$ accelerate the separation bubble bursting process up to ${\kappa}=0.10$, then diminish with further increase in ${\kappa}$. Compared with static condition, the dynamic pitching airfoil delays stall angle approximate $4{\circ}{\sim}5{\circ}$ during pitch-up stroke for ${\kappa}=0.10$. Results from this qualitative analysis provided valuable insight Into the control of dynamics stall.

Hydrodynamic characteristics for flow around wavy wings with different wave lengths

  • Kim, Mi Jeong;Yoon, Hyun Sik;Jung, Jae Hwan;Chun, Ho Hwan;Park, Dong Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.447-459
    • /
    • 2012
  • The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack ($0^{\circ}{\leq}{\alpha}{\leq}40^{\circ}$) at one Reynolds number of $10^6$. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

Modeling and Speed Control of a Horizontal Axis Wind Generator (수평축 풍력발전기의 모델링 및 속도제어)

  • Lim, J.H.;Boo, S.H.;Huh, J.C.;Kim, K.H.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Wind turbine system converts wind energy into electric energy. Since the velocity of wind is random in nature, control of the angular velocity of the blade is necessary in order to generate high quality electric power. The control of a blade can be divided into a stall regulation and a pitch control types. The stall regulation type which is based on the characteristics of an aerodynamic stall of the blades is simple and cheap, but it suffers from fluctuation of the resulting power. Or the contrary, pitch control type is based on the fact that the torque of the blade can be changed by varying the pitch angle of the blade. It is mechanically and mathematically complicated, but the control performance is better than that of the stall regulation type. This paper suggests a method of denying a mathematical modeling of the wind turbine system, and develops a speed control algorithm by pitch control. The validity of the algorithm is demonstrated with the results produced through sets of simulation.

  • PDF

Aerodynamic forces on fixed and rotating plates

  • Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.;Richards, P.J.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.127-144
    • /
    • 2010
  • Pressure measurements on static and autorotating flat plates have been recently reported by Lin et al. (2006), Holmes, et al. (2006), and Richards, et al. (2008), amongst others. In general, the variation of the normal force with respect to the angle of attack appears to stall in the mid attack angle range with a large scale separation in the wake. To date however, no surface pressures have been measured on auto-rotating plates that are typical of a certain class of debris. This paper presents the results of an experiment to measure the aerodynamic forces on a flat plate held stationary at different angles to the flow and allowing the plate to auto-rotate. The forces were determined through the measurement of differential pressures on either side of the plate with internally mounted pressure transducers and data logging systems. Results are presented for surface pressure distributions and overall integrated forces and moments on the plates in coefficient form. Computed static force coefficients show the stall effect at the mid range angle of attack and some variation for different Reynolds numbers. Normal forces determined from autorotational experiments are higher than the static values at most pitch angles over a cycle. The resulting moment coefficient does not compare well with current analytical formulations which suggest the existence of a flow mechanism that cannot be completely described through static tests.

Characteristics of Tip Vortex by Blade Loading (Blade Loading에 의한 팁와류의 특성)

  • Yoon, Yong Sang;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.273-278
    • /
    • 2002
  • The characteristics of tip vortex within a blade tip region were examined experimentally in various flow coefficients by the way of changing tip clearance and blade stagger angle in an axial Low Speed Research Compressor(LSRC). The objective was to identify the unsteady pressure distribution in the blade passage by ensemble average technique acquired from high-frequency response pressure transducers and the tip vortex by root mean square value(RMS value). Data were reduced statistically using phase-lock technique for detailed pressure distributions.

  • PDF

A Numerical Study on the Flowfield around a NACA 0021 Airfoil at Angles of Attack (NACA 0021 익형 유동장의 수치해석적 연구)

  • Kim, Sang-Dug
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.20-25
    • /
    • 2016
  • A primary benefit of flight at high angle-of-attack conditions is to be able to reduce the speed of flight and maneuvers, which can enhance the capability of sensing and obstacle avoidance for a small UAV. The flight at high angle-of-attack conditions, however, is easy to be beyond stall which is characterized by substantial flow separation over an airfoil. Current numerical analysis was conducted on the capabilities of three representative turbulence models to predict the aerodynamic characteristics of a typical airfoil at angle-of-attack conditions. The investigation shows that these turbulence models provide good comparison with experimental data for attached flow at moderate angle-of-attack conditions. Calculation by current turbulence models are, however, not appropriate at high angle-of-attack conditions with flow separation.

A Study on the Instabilities of the Centrifugal Compressor with Variable Diffuser (가변 디퓨저를 장착한 원심 압축기 불안정성 연구)

  • Cha, Bong-Jun;Im, Byeong-Jun;Yang, Su-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1123-1131
    • /
    • 2002
  • An experimental study on the performance and instability development characteristics of a centrifugal compressor equipped with a cambered variable diffuser has been performed with varying diffuser vane angles. The test was conducted at the design speed of 20,800 rpm and the 80% design speed of 16,640 rpm for 5 diffuser angles : 65$^{\circ}$, 70$^{\circ}$, 75$^{\circ}$, 77.5$^{\circ}$, 80$^{\circ}$ The steady performance test results showed that choking mass flow rate decreases and total pressure ratio increases with a narrowed surge margin as the diffuser vane angle increases. Unsteady pressures were measured using high-frequency pressure transducers at the inducer and the diffuser throat to investigate the instability phenomena such as rotating stall and surge inside the compressor. From the unsteady measurements, it is found that the transient process from rotating stall to surge was mainly affected by diffuser angles. The results of the present study can be applied to the instability control of the centrifugal compressors using a variable diffuser.

Optimisation of a novel trailing edge concept for a high lift device

  • Botha, Jason D.M.;Dala, Laurent;Schaber, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.329-343
    • /
    • 2015
  • This study aimed to observe the effect of a novel concept (referred to as the flap extension) implemented on the leading edge of the flap of a three element high lift device. The high lift device, consisting of a flap, main element and slat is designed around an Airbus research profile for sufficient take off and landing performance of a large commercial aircraft. The concept is realised on the profile and numerically optimised to achieve an optimum geometry. Two different optimisation approaches based on Genetic Algorithm optimisations are used: a zero order approach which makes simplifying assumptions to achieve an optimised solution: as well as a direct approach which employs an optimisation in ANSYS DesignXplorer using RANS calculations. Both methods converge to different optimised solutions due to simplifying assumptions. The solution to the zero order optimisation showed a decreased stall angle and decreased maximum lift coefficient against angle of attack due to early stall onset at the flap. The DesignXplorer optimised solution matched that of the baseline solution very closely. The concept was seen to increase lift locally at the flap for both optimisation methods.