• Title/Summary/Keyword: Stairwell

Search Result 28, Processing Time 0.023 seconds

A Study on Reduction Method of Stack Effect at Stairwell of High-Rise Building (고층건물 피난계단에서의 연돌효과 저감방안 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.14-20
    • /
    • 2011
  • As the height of the building increases, the stack effect in stairwell that is main facilities for evacuation becomes stronger. While the pressure rise in stairwell causes difficulties on opening the door for evacuation and has effect on smoke control system, reduction of stack effect will be necessary for providing more safe evacuation environment. The field experiments on pressure field in high-rise building are carried out to present reduction method of stack effect and the numerical analyses using network model are proceeded to design quantitatively the reduction method. As the air flow supplied from outside in lower stair and exhausted to outside in upper stair is formed in stairwell, the stack effect in stairwell is expected to be decreased.

Full Scale Testing of the Effect of Stairwell Pressurization on Pressure Differential and Flow Velocity

  • Son, Bong-Sae;Park, Kyung-Hwan;Chang, Young-Bae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • A series of full-scale testing was conducted to examine the effect of stairwell pressurization on the pressure differential between the stairwell and the auxiliary room and between the auxiliary room and the residence. Also, flow velocity profiles at open doors were measured. The building tested was a condominium that had twenty floors above the ground and two floors underground. For pressurization of the stairs, a blower was used to supply air into the stairwell at one location underground. Thirteen different cases were tested, and test variables included the number of floors with open doors and the flow rate of the air supply. When the doors on the first floor were open, the pressure differential between the stairwell and the auxiliary room was distributed almost uniformly except for locations near the first floor. When the flow rate was in the range of 180~270 CMM and the doors of one floor were open, the flow velocity could satisfy the requirement of fire safety standards and the stairwell pressure was positive at all levels. However, the minimum pressure requirement (10 Pa) could not always be satisfied. When doors on two floors were open, the flow velocity requirement could be satisfied by increasing the flow rate, but it was found impractical to satisfy the minimum pressure requirement without causing excessive pressure differential in the area near the blower.

Comparison of the Performance of a Smoke Control System by Pressurization (가압방식에 따른 전실제연설비의 성능 비교 연구)

  • Kwon, Oh-Hyun;Nam, Jun-Seok;Nam, Sang-Ok;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.24-28
    • /
    • 2017
  • This study compared the performance of a smoke control system in the case of a fire with that in the case of non-fire. Single-pressurization in the vestibule, single-pressurization in the stairwell, simultaneous smoke control of the stairwell and vestibule, which was the pressurization of smoke control, were assessed. The result showed that simultaneous smoke control of the stairwell and vestibule can maintain the differential pressure and is least influenced for the evacuation of evacuees. In addition, for the status of smoke control in Korea and the proper pressurization method, these results highlight the necessity of improving the current pressurization method through the survey.

The Influence of Zoning at Shafts of Super-tall Buildings on the Stack Effect and Stairwell Pressurization (초고층건물 샤프트의 수직구획이 연돌효과 및 급기가압 성능에 미치는 영향)

  • Kim, Beom-Kyue;Kim, Hak-Jung;Yeo, Yong-Ju;Leem, Chae-Hyun;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.92-98
    • /
    • 2012
  • This study analyzed the effect of zoning on the distribution of pressure differentials caused by stack effect and air pressurization in a center core type of 80 story super-tall building. The results showed that maximum pressure difference more than 250 Pa can be generated by stack effect without zoning. Zoning of stairwell only resulted in 10 Pa reduction of maximum pressure difference, however, zoning of both stairwell and EV shaft especially at the same floor revealed 50 % reduction in stack effect. It was also analysed that the minimum required air flow rate occurred when the stairwell temperature reached 50 % of temperature difference between indoor and outdoor.

The Influence on the Stack effect that Pressure differential system to smoke control in High-rise buildings (초고층 건축물에서 급기가압제연이 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.235-238
    • /
    • 2008
  • High-rise buildings with stack effect caused by the foreclosure, which significantly delayed the spread of a fire in effects of these stack effect driving force said. In this research on the stack effect of the lobby if the pressurization of the stairwell analysis of the pressure distribution of the CONTAMW. Overall, the pressurization of the lobby makes it stairwell amount of pressure(+) to the zone in pressure designed to prevent the spread of smoke control performance and found that, the way a normal state and sub-pressurization in the stairwell with stack effect of the turbulence Such as the formation of the upper flow, but, in the upper atmosphere with pressurization was formed by the underlying trend.

  • PDF

The Study on the Solution of Stack effect in the Vertical shaft of High-rise Buildings (고층건축물 수직 샤프트 연돌효과 해소방법에 대한 연구)

  • Kim, Jin-Soo;Chang, Hee-Chul
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.242-245
    • /
    • 2007
  • Stack effects occurred in the stairwell, an important evacuation means of the high-rise building, give a big impact on stairwell pressure difference distribution and it could obstruct evacuation from the building, so should be controlled within proper range. Computer simulation was conducted with CONTAMW2.4 to find the solution of stack effects of the high-rise building. It was able to solve the imbalance pressure difference with a pressurization and a depressurization supplied by fans on higher and lower parts of the stairwell.

  • PDF

Simulation of buoyant turbulent flow in a stairwell (건물 계단통에서의 부력에 의한 난류유동 해석)

  • 명현국;진은주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.217-226
    • /
    • 1998
  • A numerical study has been carried out for two- and three-dimensional buoyant turbulent flow in a stairwell model. The Reynolds-averaged Navier-Stokes and energy equations are solved with the authors'own computer program. Two models by the Boussinesq approximation and the density-gradient form are used for buoyancy terms in the governing equations. Two- and three-dimensional predictions of the velocity and temperature fields are presented and the results are compared with experimental data. Comparisons have also been made in detail with two-dimensional predictions. Two-dimensional and three-dimensional simulations have predicted the overall features of the flow satisfactorily. A better agreement with experiment is achieved with three-dimensional simulations.

  • PDF

Numerical analysis of 3-dimensional buoyant turbulent flow in a stairwell model with three different finite differencing schemes (유한차분 도식에 따른 건물 계단통에서의 3차원 부력 난류유동 수치해석)

  • Myong, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 1999
  • This paper describes a numerical study of three-dimensional buoyant turbulent flow in a stairwell model with three convective differencing schemes, which include the upwind differencing scheme, the hybrid scheme and QUICK scheme. The Reynolds-averaged Navier-Stokes and energy equations are solved with a two-equation turbulence model. The Boussinesq approximation is used to model buoyancy terms in the governing equations. Three-dimensional predictions of the velocity and temperature fields are presented and are compared with experimental data. Three-dimensional simulations with each scheme have predicted the overall features of the flow fairly satisfactorily. A better agreement with experimental is achieved with QUICK scheme.

  • PDF

A Numerical Study for Fire Safety Evaluation of the Multi-story Residential Buildings -The Effects of the Openings of Stairwell on Fire Characteristics- (다세대주택의 화재안전평가에 대한 수치해석 연구 -계단실 개구부의 개폐가 화재특성에 미치는 영향-)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.15-23
    • /
    • 2007
  • In the events of a fire in the residential building, highly flammable polyurethane foam sofa produce toxic smokes. In this type of fire, the residents of the building can be gotten into the difficulties of evacuating from the fire places or may be to death due to a lot of hot toxic gases. In this study, CFD simulations were carried out to study the effects of the openings of stairwell on the fire characteristics of fire room and stairwell. Also, analysis of fire hazard based on the tenability limits of fire and FED(fractional effective dose) was performed to evaluate the life safety of the residents of the building. In the fire room, maximum temperature was about $290^{\circ}C$, maximum CO concentration was about 4,740 ppm, and the time to incapacitation of residents in fire room was about t=144 s. In the stairwell, temperature and CO concentration in the condition of openings to be open were even lower than those in it to be closed. Time to the tenability limit with respect to smoke visibility in the stairwell with openings, which was open, was shorter than that of it without openings to be open. It has been shown from this study that opening the stairwell openings is able to decrease the fire hazards to the life safety in the multi-story residential building fire.

Study on Field Experiment of Stack Effect Reduction in Stairwell of Building (건축물 계단에서의 연돌효과 저감방안에 대한 현장실험 연구)

  • Kim, Jung-Yup;Kim, Ji-Seok;Lee, Su-Gak
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.484-490
    • /
    • 2015
  • The winter stack effect that occurs in vertical construction passages such as the stairwell or elevator shaft of a high-rise building negatively affects living environments, energy usage, and personal safety; therefore, a mitigation of the stack effect is required to improve building conditions. Recently, circulation-type facilities that comprise the usage of air blowers and vertical ducts were proposed as part of a mechanical approach to quantitatively control the stack effect. In this study, these circulation-type facilities were installed in a building stairwell and the performance of the device was evaluated during its operation. A numerical-analysis result was obtained under the test conditions using a network-model-based, numerical-analysis method, and the result was then used for a comparison with the test result.