• 제목/요약/키워드: Stair climb

검색결과 13건 처리시간 0.015초

각가속도 변화에 의해 탐지된 슬립에 기반한 주행로봇의 견인력 제어 (Traction Control of Mobile Robot Based on Slippage Detection by Angular Acceleration Change)

  • 최현도;우춘규;강현석;김수현;곽윤근
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.184-191
    • /
    • 2009
  • The common requirements of rough terrain mobile robots are long-term operation and high mobility in rough terrain to perform difficult tasks. In rough terrain, excessive wheel slip could cause an increase in the amount of dissipated energy at the contact point between the wheel and ground or, even more seriously, the robot could lose all mobility and become trapped. This paper proposes a traction control algorithm that can be independently implemented to each wheel without requiring extra sensors and devices compared with standard velocity control methods. The proposed traction algorithm is analogous to the stick-slip friction mechanism. The algorithm estimates the slippage of wheels by angular acceleration change, and controls the increase or decrease state of torque applied to wheels Simulations are performed to validate the algorithm. The proposed traction control algorithm yielded a 65.4% reduction of total slip distance and 70.6% reduction of power consumption compared with the standard velocity control method.

6족 보행로봇에 관한 기초연구 (A Basic Study of Hexapod Walking Robot)

  • 강동현;민영봉;반전훈구;매전간웅
    • Journal of Biosystems Engineering
    • /
    • 제32권5호
    • /
    • pp.339-347
    • /
    • 2007
  • A hexapod walking robot had been developed for gathering information in the field. The developed robot was $260{\times}260{\times}130$ ($W{\times}L{\times}H$, mm) in size and 14.7 N in weight. The legs had nineteen degrees of freedom. A leg has three rotational joints actuated by small servomotors. Two servomotors placed at ankle and knee played the roles of vertical joint for up and down motions of the leg and the other one placed at coxa played the role of horizontal joint for forward and backward motions. In addition, a servomotor placed at thorax between the front legs and the middle legs played the role of vertical joint for pumping the two front legs to climb stair or inclination. Walking motion of the robot was executed by tripod gait. The robot was controlled by manual remote-controller communicated by an infrared ray. Two controllers were equipped to control the walking of the robot. The sub-controller using PIC microcomputer (Microchips, PIC16F84A) received the 16 bit command signal from the manual remote controller, decoded it to 8bit and transmitted it to the main microcomputer (RENESAS, SH2/7045), which controlled the 19 servomotors using the PWM command signals. Walking speeds were controlled by adjusting the period of command cycle and the stride. Forward walking speed were within 100 cm/min to 300 cm/min. However, experimental walking speed had the error of 4-40 cm/min to compare with the theoretical one, because of slippage of the leg and the circular arc motion of servomotor of coxa.

The Effect of adding Hip Abductor Strengthening to Conventional Rehabilitation on Muscular Strength and Physical Function following Total Knee Replacement

  • Kim, San-Han;Park, Hye-Kang;Lee, Wan-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권1호
    • /
    • pp.16-23
    • /
    • 2022
  • Objective: This study aimed to investigate the effect of adding hip abductor strengthening to conventional rehabilitation on muscle strength and physical function following total knee replacement (TKR) for knee osteoarthritis. Design: Randomized controlled trial Methods: Thirty-five participants were randomly allocated to exercise groups I (n=18) and II (n=17). Group I underwent hip abductor training and conventional rehabilitation for 30 min per day, 5 days per week for 4 weeks. Group II underwent conventional rehabilitation for 30 min per day, 5 days per week for 4 weeks. The participants in both groups also received continuous passive motion therapy for 15 min per day, 5 days per week for 4 weeks. To investigate the effect of the intervention, the Biodex dynamometer was used to measure the peak torque of both knee extensors and hip abductors. This study used the Knee Outcome Survey-Activities of Daily Living Scale (KOS-ADLS) to assess physical function, as well as the figure-of-8 walk test (F8W) and the stair climb test (SCT). Results: According to the interventions, exercise groups I and II showed significantly improved muscle strength and KOS-ADLS, F8W, and SCT scores (p<0.001). Compared with that of exercise group II, exercise group I showed significantly improved hip abductor strength (p<0.001) and KOS-ADLS, F8W, and SCT scores (p<0.05). Conclusions: The results of this study indicate that the combination of hip abductor strengthening and conventional rehabilitation is an effective exercise method to increase hip abductor muscle strength and physical function after TKR.