• 제목/요약/키워드: Stainless steel foils

검색결과 11건 처리시간 0.027초

Microstructure and properties of 316L stainless steel foils for pressure sensor of pressurized water reactor

  • He, Qubo;Pan, Fusheng;Wang, Dongzhe;Liu, Haiding;Guo, Fei;Wang, Zhongwei;Ma, Yanlong
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.172-177
    • /
    • 2021
  • The microstructure and texture of three 316L foils of 25 ㎛ thickness, which were subjected to different manufacturing process, were systematically characterized using advance analytical techniques. Then, the electrochemical property of the 316L foils in simulated pressurized water reactor (PWR) solution was analyzed using potentiodynamic polarization. The results showed that final rolling strain and annealing temperature had evident effect on grain size, fraction of recrystallization, grain boundary type and texture distribution. It was suggested that large final rolling strain could transfer Brass texture to Copper texture; low annealing temperature could limit the formation of preferable orientations in the rolling process to reduce anisotropy. Potentiodynamic polarization test showed that all samples exhibited good corrosion performance in the simulated primary PWR solution.

Poly-Silicon TFT's on Metal Foil Substrates for Flexible Displays

  • Hatalis, Miltiadis;Troccoli, M.;Chuang, T.;Jamshidi, A.;Reed, G.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.692-696
    • /
    • 2005
  • In an attempt to fabricate all inclusive display systems we are presenting a study on several elements that would be used as building blocks for all-on-board integrated applications on stainless steel foils. These systems would include in the same substrate all or many of the components needed to drive a flat panel OLED display. We are reporting results on both digital and analog circuits on stainless steel foils. Shift registers running at speeds greater than 1.0MHz are shown as well as oscillators operating at over 40MHz. Pixel circuits for driving organic light emitting diodes are presented. The device technology of choice is that based on poly-silicon TFT technology as it has the potential of producing circuits with good performance and considerable cost savings over the established processes on quartz or glass substrates (amorphous Silicon a-Si:H or silicon on Insulator SOI).

  • PDF

Pd-based metallic membranes for hydrogen separation and production

  • Tosti, Silvano;Basile, Angelo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.25-28
    • /
    • 2003
  • Low cost composite metallic membranes for the hydrogen separation and production have been prepared by using thin Pd-Ag foils reinforced by metallic (stainless steel and nickel) structures. Especially, “supported membranes” have been obtained by a diffusion welding procedure in which Pd-Ag thin foils have been joined with perforated metals (nickel) and expanded metals (stainless steel): in these membranes the thin palladium foil assures both the high hydrogen permeability and the perm-selectivity while the metallic support provides the mechanical strength. A second studied method of producing "laminated membranes" consists of coating non-noble metal sheets with very thin palladium layers by diffusion welding and cold-rolling. Palladium thin coatings over these metals reduce the activation energy of the hydrogen adsorption process and make them permeable to the hydrogen. In this case, the dense non-noble metal has been used as a support structure of the thin Pd-Ag layers coated over its surfaces: a proper thickness of the metal assures the mechanical strength, the absence of defects (cracks, micro-holes) and the complete hydrogen selectivity of the membrane. membrane.

  • PDF

電解銅薄의 優先方位, 斷面組織, 表面形態 및 機械的 性質 (Preferred Orientation, Microstructure, Surface Morphology and Mechanical Properties of Electrodeposited Copper Foils)

  • 김윤근;이동녕
    • 한국표면공학회지
    • /
    • 제18권3호
    • /
    • pp.95-104
    • /
    • 1985
  • A study has been made of preferred orientation, crose sectional microstructure, surface morphology and mechanical properties of copper foils fabricated by electrodeposition on 304 stainless steel plate from copper sulfate baths for high speed plating. The preferred orientation of the copper foils changed from the [110] to the [111] to ture with decreasing bath temperature and increasing cathode current density. The foils with the [110] texture had the field oriented texture type structure and the surface of many asperities grooved approximately perpendicular to the subtrate. A specimen with the [111]+[311] texture had the lower strength than one with the [10] texture, if they were obtained under similar electrolysis conditions.

  • PDF

Thin Film Transistor Backplanes on Flexible Foils

  • Colaneri, Nick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.529-529
    • /
    • 2006
  • Several laboratories worldwide have demonstrated the feasibility of producing amorphous silicon thin film transistor (TFT) arrays at temperatures that are sufficiently low to be compatible with flexible foils such as stainless steel or high temperature polyester. These arrays can be used to fabricate flexible high information content display prototypes using a variety of different display technologies. However, several questions must be addressed before this technology can be used for the economic commercial production of displays. These include process optimization and scale-up to address intrinsic electrical instabilities exhibited by these kinds of transistor device, and the development of appropriate techniques for the handling of flexible substrate materials with large coefficients of thermal expansion. The Flexible Display Center at Arizona State University was established in 2004 as a collaboration among industry, a number of Universities, and US Government research laboratories to focus on these issues. The goal of the FDC is to investigate the manufacturing of flexible TFT technology in order to accelerate the commercialization of flexible displays. This presentation will give a brief outline of the FDC's organization and capabilities, and review the status of efforts to fabricate amorphous silicon TFT arrays on flexible foils using a low temperature process. Together with industrial partners, these arrays are being integrated with cholesteric liquid crystal panels, electrophoretic inks, or organic electroluminescent devices to make flexible display prototypes. In addition to an overview of device stability issues, the presentation will include a discussion of challenges peculiar to the use of flexible substrates. A technique has been developed for temporarily bonding flexible substrates to rigid carrier plates so that they may be processed using conventional flat panel display manufacturing equipment. In addition, custom photolithographic equipment has been developed which permits the dynamic compensation of substrate distortions which accumulate at various process steps.

  • PDF

MICRO HOLE FABRICATION BY MECHANICAL PUNCHING PROCESS

  • Joo B. Y.;Rhim S. H.;Oh S. I.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.179-188
    • /
    • 2003
  • The objective of our study is to investigate the micro fabric ability by conventional metal forming processes. In the present investigation, micro hole punching was studied. We tried to control punching process at the micro level and scaled down the standard blanking condition for $25{\mu}m$ hole fabrication. To accommodate this, tungsten carbide tooling sets and micro punching press were carefully designed and assembled meeting accuracy requirements for $25{\mu}m$ hole punching. With our developments, 100, 50, and $25{\mu}m$ holes were successfully made on metal foils such as brass and stainless steel of 100, 50, and $25{\mu}m$ in thickness, respectively, and hole sizes and shapes were measured and analyzed to investigate fabrication accuracy. Shear behavior during micro punching was also discussed. Our study showed that the conventional punching process could produce high quality holes down to $25{\mu}m$.

  • PDF

Transport Property of Externally Reinforced Bi-2223 Superconducting Tape under Axial Fatigue Loading

  • Shin, Hyung-Seop;John-Ryan C. Dizon;Kim, Ki-Hyun;Oh, Sang-Soo;Ha, Dong-Woo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.22-26
    • /
    • 2004
  • For practical applications, the evaluation of reliability or endurance of HTS conductors is necessary. The mechanical properties and the critical current, Ie, of multifilamentary Bi-2223 superconducting tapes, externally reinforced with stainless steel foils, subjected to high cycle fatigue loading in the longitudinal direction were investigated at 77K. The S-N curves were obtained and its transport property was evaluated with the increase of repeated cycles at different stress amplitudes. The effect of the stress ratio, R, on the Ie degradation behavior under fatigue loading was also examined considering the practical application situation of HTS tapes. Microstructure observation was conducted in order to understand the Ie degradation mechanism in fatigued Bi-2223 tapes.

축방향 피로하중에 의한 Bi-2223 복합 초전도선재의 전기-기계적 특성 (Electro-mechanical properties in Bi-2223 superconducting composite tape due to axial fatigue loading)

  • 신형섭;존얀디존;김기현;오상수;하동우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.345-348
    • /
    • 2004
  • For practical applications, the evaluation of reliability or endurance of HTS conductors is necessary. The mechanical properties and the critical current, $I_c$, of multifilamentary Bi-2223 superconducting tapes, externally reinforced with stainless steel foils, subjected to high cycle fatigue loading in the longitudinal direction were investigated at 77K. The S-N curves were obtained and its transport property was evaluated with the increase of repeated cycles at different stress amplitudes. The effect of the stress ratio, R, on the $I_c$ degradation behavior under fatigue loading was also examined considering the practical application situation of HTS tapes. Microstructure observation was conducted in order to understand the L degradation mechanism in fatigued Bi-2223 tapes.

  • PDF

초미세 금속 박판의 마이크로 채널 포밍 (Micro Channel Forming with Ultra Thin Metal Foil)

  • 주병윤;오수익;백승욱
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.157-163
    • /
    • 2006
  • Our research dealt with micro fabrication using micro forming process. The goal of the research was to establish the limit of forming process concerning the size of forming material and formed shape. Flat-rolled ultra thin metallic foils of pure copper(3.0 and $1.0{\mu}m$ in thickness)and stainless steel($2.5{\mu}m$ in thickness) were used for forming material. We obtained the various shapes of micro channels as using designed forming process. $12-14{\mu}m$ wide and $9{\mu}m$ deep channels were made on $3.0{\mu}m$ thick foil and $6{\mu}m$ wide and $3{\mu}m$deep channels were made on $1.0{\mu}m$ thick foil. Si wafer die for forming was fabricated by using etching technique. And the relation of etching time and die dimension was investigated for fabricating precisely die groove. For the forming, die and metal foil were vacuum packed and the forming was conducted with a cold isostatic press. The formed channels were examined in terms of their dimension, surface qualities and potential for defects. Base on the examinations, formability of ultra thin metallic foil was also discussed. Finally, we compared the forming result with simulation. The result of research showed that metal forming technology is promising to produce micro parts.

Direct Fabrication of a-Si:H TFT Arrays on Flexible Substrates;Principal Manufacturing Challenges and Solutions

  • O’Rourke, Shawn M.;Loy, Douglas E.;Moyer, Curt;Ageno, Scott K.;O’Brien, Barry P.;Bottesch, Dirk;Marrs, Michael;Dailey, Jeff;Bawolek, Edward J.;Trujillo, Jovan;Kaminski, Jann;Allee, David R.;Venugopal, Sameer M.;Cordova, Rita;Colaneri, Nick;Raupp, Gregory B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.251-254
    • /
    • 2007
  • Principal challenges to $\underline{direct\;fabrication}$ of high performance a-Si:H transistor arrays on flexible substrates include automated handling through bonding-debonding processes, substrate-compatible low temperature fabrication processes, management of dimensional instability of plastic substrates, and planarization and management of CTE mismatch for stainless steel foils. Viable solutions to address these challenges are described.

  • PDF