• Title/Summary/Keyword: Stainless Steel 316L

Search Result 278, Processing Time 0.025 seconds

ANALYSIS ON MICROBIOLOGICALLY INFLUENCED CORROSION FAILURE CASE OF SUS316L STAINLESS STEEL WELDS

  • Miyano, Yasuyuki;Yamamoto, Michiyoshi;Watanabe, Kazuya;Kikuchi, Yasushi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.133-138
    • /
    • 2002
  • Microbiologically Influenced Corrosion (MIC) was suspected in a corrosion failure of cooling system of stainless piping welded joint, carrying marine water. Marine water which is used for cooling water in a plant was transferred to the laboratory and used for experiment. In the first experiment, weld metal samples were exposed to the test solution for 56 days (marine water and sterilized marine water (control)). Surface condition of experimental coupons was observed using a Scanning Electron Microscope (SEM). In another experiment, free corrosion potential of these material was monitored for 56 days. Pitting corrosion was found in the coupons exposed to marine water. Free corrosion potential ennoblement was found to be significant compared to control. It was suspected that this corrosion case was MIC. In the second experiment, coupons were exposed to diluted nutrient medium containing single culture of microbes isolated from the MIC causing marine water sample used for the first experiment. After exposure test, surface condition of experimental coupon was observed using SEM. Pitting corrosion was found in coupons exposed to some of the isolates. The results indicate that they contribute to the corrosive effect of the SUS316L welds.

  • PDF

Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate (그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성)

  • Lee, Su-Hyung;Kim, Jung-Soo;Kang, Nam-Hyun;Jo, Hyung-Ho;Nam, Dae-Guen
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

Property Assessment of 316L Austenitic Stainless Steel treated with Hybrid Surface Treatment (하이브리드 표면처리된 STS 316L의 특성평가)

  • Lee, Geun-Hak;Cha, Byeong-Cheol;Gwon, A-Ram;Jeong, U-Chang
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.192-192
    • /
    • 2013
  • 하이브리드 표면처리는 다른 표면처리법을 동시 또는 연속적으로 행하여 단일표면처리에 비해 더욱 우수한 특성을 부여시키기 위한 표면처리법이다. 본 연구는 붕소와 질소 원소를 이용한 하이브리드 표면처리를 오스테나이트계 스테인리스강인 STS 316L 소재에 적용하여 변화된 특성을 평가하였다. 본 실험에 사용된 하이브리드 표면처리법으로는 붕소분말을 이용한 보로나이징처리와 활성스크린을 이용한 이온질화처리법을 적용하였다. 하이브리드 표면처리된 STS 316L시편은 FE-SEM을 이용하여 표면형상 및 단면조직을 관찰하였으며 GDS와 XRD를 이용하여 깊이에 따른 원소 및 상분석을 실시하였다. 또한 마이크로비커스 경도계와 마모시험기를 이용하여 경도와 마모특성을 측정하였고, 염수분무시험을 통하여 해수환경에서 부식거동을 평가하였다.

  • PDF

An Investigation on Application of Experimental Design and Linear Regression Technique to Predict Pitting Potential of Stainless Steel

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.52-61
    • /
    • 2021
  • This study using experimental design and linear regression technique was implemented in order to predict the pitting potential of stainless steel in marine environments, with the target materials being AL-6XN and STS 316L. The various variables (inputs) which affect stainless steel's pitting potential included the pitting resistance equivalent number (PRNE), temperature, pH, Cl- concentration, sulfate levels, and nitrate levels. Among them, significant factors affecting pitting potential were chosen through an experimental design method (screening design, full factor design, analysis of variance). The potentiodynamic polarization test was performed based on the experimental design, including significant factor levels. From these testing methods, a total 32 polarization curves were obtained, which were used as training data for the linear regression model. As a result of the model's validation, it showed an acceptable prediction performance, which was statistically significant within the 95% confidence level. The linear regression model based on the full factorial design and ANOVA also showed a high confidence level in the prediction of pitting potential. This study confirmed the possibility to predict the pitting potential of stainless steel according to various variables used with experimental linear regression design.

Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel (스테인리스 스틸의 표면 산화피막 성장과 내부식성 상관관계)

  • Park, Youngju;Yu, Jinseok;Sim, Seong Gu;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.152-157
    • /
    • 2021
  • Stainless steel is a metal that does not generate rust. Due to its excellent workability, economic feasibility, and corrosion resistance, it is used in various industrial fields such as ships, piping, nuclear power, and machinery. However, stainless steel is vulnerable to corrosion in harsh environments. To solve this problem, its corrosion resistance could be improved by electrochemically forming an anodized film on its surface. In this study, 316L stainless steel was anodized at room temperature with ethylene glycol-based 0.1 M NH4F and 0.1M H2O electrolyte to adjust the thickness of the oxide film using different anodic oxidation voltages (30 V, 50 V, and 70 V) with time control. The anodic oxidation experiment was performed by increasing the time from 1 hour to 7 hours at 2-hour intervals. Corrosion resistance according to the thickness of the anodic oxide film was observed. Electrochemical corrosion behavior of oxide films was investigated through polarization experiments.

On Dissimilar Friction Welded Joints(STS316L/IN X-750) of Turning Vane Bolt (Turning Vane Bolt의 이종재(STS316L/IN X-750) 마찰용접에 관하여)

  • SHIN KI-SUK;KONG YU-SIK;KIM SEON-JIN;RYOO IN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.331-336
    • /
    • 2004
  • Dissimilar friction welding were produced using 10mm and 11mm diameter solid bar in Inconel ally(IN X-750) to Stainless steel(STS316L) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Virkers hardness surveys of the bond of area and HAZ and macro-structure investigations. The specimens were tested as welded, not heat-treated. The tensile strength of the friction welded steel bars was increased up to $95\%$ of the STS316L base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), $P_1=220(MPa),\;P_2=260(MPa),\;t_1=4(s),\;t_2=4(s)$ when the total upset length is 7(mm).

  • PDF

Study on Optimization of Dissimilar friction Welding of Nuclear Power Plant Materials (Cu Alloy/STS316L) and Its Real Time AE Evaluation (원자력 발전소용 이종재(Cu 합금/STS316L) 마찰용접의 최적화와 AE에 의한 실시간 평가에 관한 연구)

  • 유인종;권상우;황성필;공유식;오세규
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • In this paper, joints of Cu-1Cr-0.1Zr alloy to STS316L were performed by friction welding method. Particularly, Cu-1Cr-0.1Zr alloy is attractive candidate as nuclear power plant material and exibit the best combination of high strength and good electrical and thermal conductivity of any copper alloy examined. The stainless steel is a structural material while copper alloy acts as a heat sink material for the surface heat flux in the first wall. So, in this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also the development of in-process real-time weld quality (such as strength and toughness) evaluation technique by acoustic emission for friction welding of such nuclear reactor component of Cu-1Cr-0.1Zr alloy to STS316L steel sere performed.

  • PDF