• Title/Summary/Keyword: Stagnation point

Search Result 196, Processing Time 0.025 seconds

Flow and Temperature Characteristics in a Circular Impinging Jet (원형 충돌 제트에서의 유동 및 온도 특성)

  • Kim Jungwoo;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.237-240
    • /
    • 2002
  • In the present study, we perform LES of turbulent flow and temperature fields in a circular impinging jet at Re=5000 for two cases of H/D=2 and 6 (H denotes the distance between the jet exit and flat plate, and D does the diameter of the jet exit). In the case of H/D=2, the regular vortical structures observed in free jet do not exist because of the smaller distance than the potential core. The Nusselt number on the wall is largest at $r/D{\cong}10.67$ where vortex rings Impinge. At $r/D{\cong}1.5{\~}2.0$, the vortex rings induce the secondary vortices, resulting in a secondary peak in the Nusselt number there. In the case of H/D=6, the vortex rings change into three-dimensional vortical structures and the small-scale vortices impinge on the flat plate. The increase of turbulent intensity due to small-scale vortices results in the largest Nusselt number at the stagnation point.

  • PDF

The Effect of Nozzle Diameter on Heat Transfer to a Fully Developed Round Impinging Jet (완전 발달된 원형 충돌제트의 노즐 직경이 열전달에 미치는 영향)

  • Lee, Dae-Hee;Won, Se-Youl;Lee, Young-Min;Cho, Heon-No
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.519-525
    • /
    • 2000
  • The effect of nozzle diameter on the local Nusselt number distributions has been investigated for an axisymmetric turbulent jet impinging on the flat plate surface. The flow at the nozzle exit has a fully developed velocity profile. A uniform heat flux boundary condition at the plate surface was created using gold film Intrex. Liquid Crystal was used to measure the plate surface temperature. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle to surface distance (L/d) from 2 to 14, and the nozzle diameter (d) from 1.36 to 3.40 cm. The results show that the Nusselt number at and near the stagnation point increase with an increasing value of the nozzle diameter.

Local Heat Transfer Characteristics in the Wake Region of a Circular Cylinder (원형 실린더 후류 영역의 국소 열전달 특성)

  • Chang Byong Hoon
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.30-36
    • /
    • 2005
  • This paper reports the experimental study of the heat transfer characteristics of the wake region behind a cylinder in cross flow. Local heat transfer coefficient was measured from the stagnation point (θ=0°) to 180°, and the variation of Nu in the axial direction along the cylinder was also studied. The results show that the heft transfer rate at the rear (θ=180°) near the duct wall can increase as much as 58% over the 2 dimensional value at the center of the duct. The heat transfer profiles in the wake region also show distinct effects of the aspect ratio and the heat transfer boundary condition.

Characteristic Flux-Difference Improvement for Inviscid and Viscous Hypersonic Blunt Body Flows

  • Lee Gwang-Seop;Hong Seung-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.48-58
    • /
    • 1999
  • The Characteristic Flux Difference Splitting (CFDS) scheme designed to adapt the characteristic boundary conditions at the wall and inflow/outflow boundary planes satisfies Roe's property U, although the CFDS Jacobian matrix is decomposed by a product of elaborate transformation matrices and explicit eigenvalue matrix. When the CFDS algorithm, thus a variant of Roe's scheme, is applied straightforwardly to hypersonic flows over a blunt body, the strong bow shock gradually breaks down near the stagnation point. This numerical instability is widely observed by many researchers employing flux-difference method, known in the literature as the carbuncle phenomenon. Many remedies have been proposed and resulted in partial cures. When the idea of Sanders et al. which identifies the minimum eigenvalues near the discontinuity present is applied to CFDS method, it is shown that the instability problem can be controlled successfully. A few flux splitting methods have also been tested and results are compared against the Nakamori's Mach 8 blunt body flow.

  • PDF

Study on Correlation of Droplet Flow Rate and Film Boiling Heat Transfer in Spray Cooling (액적 유량과 분무냉각 막비등 열전달의 상관관계에 관한 연구)

  • Yun, Seung-Min;Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.335-340
    • /
    • 2007
  • A new correlation between the Nusselt number based on modified heat transfer coefficient and Reynold number based on droplet-flow-rate was developed for the experimental data. The modified heat transfer coefficient was defined as ratio of wall heat flux to droplet subcooling. In the previous reports, the local heat flux of spray cooling in the film boiling region was experimentally investigated for the water spray region of $D_{max} = 0.0007{\sim}0.03m^3/(m^2s)$ . In the region near the stagnation point of spray flow, a new heat transfer correlation is recommended which shows good predictions for the water spray region of $D_x{\le}0.01m^3/(m^2s)$.

An Experimental Study on Turbulent Counter Jet Flame near Stagnation Point (대향 제트 정체점 주변의 난류 화염에 관한 연구)

  • Ko, Il-Min;Seo, Jeong-Il;Hong, Jung-Goo;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.128-134
    • /
    • 2006
  • A characterization of turbulent reacting flows has proved difficult owing to the complex interaction between turbulence, mixing, and combustion chemistry. There are many types of time scales in turbulent flame which can determine flame structure. This counter jet type premixed burner produces high intensity turbulence. The goal is to gain better insights into the flame structures at high turbulence. 6 propane/air flames gave been studied with high velocity fluctuation in bundle type nozzle and in one hole type nozzle. By measuring velocity fluctuation, turbulent intensity and integral length scale are obtained. And sets of OH LIF images were processed to see flame structure of the mean flame curvatures and flame lengths for comparison with turbulence intensity and turbulent length scales. The results show that the decrease in nozzle size generates smaller flow eddy and mean curvatures of the flame fronts, and a decrease in Damkohler number estimated from flow time scale measurement.

  • PDF

Digit all Furniture (디지털 퍼니쳐)

  • 오준식
    • Journal of the Korea Furniture Society
    • /
    • v.15 no.1
    • /
    • pp.27-40
    • /
    • 2004
  • Designers in Korea have stuck to development of furniture which has high reliance of foreign national resources. They made mistake that they didn't try to make inroads into the world market. They have kept production system of labor intensive method till 1990. They imitated foreign manufactures to win in domestic economy. It became the complete lack of exploitation experience and brought stagnation of design which couldn't defeat. Now Korea is making progressive impression in territory of an electron and information in a foreign market. A new progress of furniture design which was developed centering around a digital suggest a new appearance that will lead a future with modernization in a space of residence. This sis a new starting point which was most completed by anyone. If we will prepare without delay we can take part in a world market with competitive power.

  • PDF

Numerical Analysis of Hypersonic Flow over Small Radius Blunt Bodies (작은 크기의 무딘 물체에 대한 극초음속 유동의 수치해석)

  • Lee Chang Ho;Park Seung O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.109-114
    • /
    • 2002
  • The effect of nose radius on aerodynamic heating are investigated by using the Wavier-Stokes code extended to thermochemical nonequilibrium airflow. A spherical blunt body, whose radius varies from 0.003048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km is considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Obtained result reveals that the flow chemistry for very small radius is nearly frozen, and therefore the contribution of heat flux due to chemical diffusion is smaller than that of translational energy. As the radius becomes larger, the portion of diffusion heat flux becomes greater than translational heat flux and approaches to a constant value.

  • PDF

Frost formation on a cold cylinder surface in cross flow (원관의 냉각면에서의 착상)

  • Lee, Dong-Hoon;Yang, Dong-Keun;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1540-1545
    • /
    • 2004
  • This paper presents a semi-empirical model to predict the frost growth formed on the cold cylinder surface. The model is composed of the correlations for frost properties including the various frosting parameters and local heat transfer coefficient. The effects of varying the correlations for local heat transfer coefficient on the frost growth are examined to establish the model. The numerical results are compared with experimental data obtained by the previous researchers. The results agree well with the experimental data within a maximum error of 13%. As the results, the frost thickness decreases with changing angular position from front stagnation to separation point. Also the effects of air velocity on the frost growth are negligible, as compared to the other frosting parameters.

  • PDF

A Numerical Study of Turbulent Flow and Heat Transfer due to Slot-jet impinging on a Moving flat plate (이동평판에 작용하는 슬롯 충돌제트의 유동 및 열전달에 관한 수치적 연구)

  • Lee, Jong-Seok;Kim, Dong-Keon;Kim, Moon-Kyung;Yoon, Soon-Hyun;Kim, Bong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2798-2803
    • /
    • 2008
  • The confined slot air jet impinging normally on a moving flat surface has been investigated numerically by using commercial CFD code Ansys CFX-V11. Turbulent flows are modeled using k-w turbulence model. Two-dimensional turbulent flow is considered. Calculations were conducted for a nozzle-to-plate spacing of eight slot nozzle width, at three Reynolds number(Re=4500, 6700 and 10,000) and four surface-to-velocity ratios i.e. 0, 0.25, 0.5 and 1. Results are compared against corresponding cases for heat transfer from a stationary plate. Local Nusselt number is calculated under constant wall temperature condition. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number, but decrease with the plate velocity.

  • PDF