• Title/Summary/Keyword: Stage-Discharge curve equation

Search Result 21, Processing Time 0.025 seconds

A development of rating-curve using Bayesian Multi-Segmented model (Bayesian 기반 Multi-Segmented 곡선식을 활용한 수위-유량 곡선의 불확실성 분석)

  • Kim, Jin-Young;Kim, Jin-Guk;Lee, Jae Chul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.253-262
    • /
    • 2016
  • A Rating curve is a regression equation of discharge versus stage for a given point on a stream where the stream discharge is measured across the stream channel with a stage and discharge measurement. The curve is generally used to calculate discharge based on the stage. However, the existing approach showed problems in terms of estimating uncertainty associated with regression parameters including the separation parameter for low and high flow. In this regard, this study aimed to develop a new method for the aforementioned problems based on Bayesian approach, which can better estimate the parameter and its uncertainty. In addition, this study used a Bayesian Multi-Segmented (Bayesian M-S) model which is provided a comparison between the existing and proposed scheme. The proposed model showed better results for the parameter estimation than the existing approach, and provided better performance in terms of estimating uncertainty range.

A Study of Sediment Discharge and Bed Change Characteristics of the Local Rivers in Korea (국내 지방하천의 유사량과 하상변동 특성에 관한 연구)

  • Son, Hogeun;Lee, Jungsik;Shin, Shachul;Moon, Changgeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.31-39
    • /
    • 2014
  • The objective of this study is to suggest the proper sediment transport equation and short and long-term bed change for planning and implementing the river management in Korea. To analyze total sediment discharge and short and long-term bed change, existing sediment transport equations, HEC-RAS 4.1 and CCHE2D numerical models were applied in urban and mountainous rivers. The results of this study are as followings; Firstly, the modified Einstein equation showed the most appropriate result for the estimation of total sediment discharge in the local rivers. Secondly, The stage-discharge relation curve and the discharge-total sediment discharge relation curve were suggested to examine the characteristics of river bed change. Finally, it is founded that river bed change of mountainous river has occurred greater than that of the urban river, and the river bed of urban river now tends to be stabilized on the whole.

A Study on the Prediction of Discharge by Estimating Optimum Parameter of Mean Velocity Equation (평균유속공식의 최적매개변수 산정에 의한 유량예측에 관한 연구)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5578-5586
    • /
    • 2012
  • The accurate estimation of discharge is very essential as the important factor of river design for the utilization and flood control, hydraulic construction design. The present discharge production is using the stage-discharge relationship curve in the river. The rating curve uses the method by predicting the discharge based on regression analysis using the measured stage and discharge data in a flood season. The method is comparatively convenient and has especially advantages in that it can predict the discharge having the difficulty of observation in a flood season. However, this method has basically room for improvement because the method only uses the relationship between stage and discharge, and doesn't reflect the hydraulic parameters such as hydraulic radius, energy slope, roughness, topography, etc.. Therefore, in this study, discharge was predicted using the convenient calculation method with empirical parameters of the Manning and Chezy equations, which were proposed by Choo et at (2011) in KSCE as a new methodology for estimating discharge in open channel. The proposed method can conveniently estimate empirical parameters in both of Manning and Chezy equations and the discharge is estimated in the open channels. There are proved by using data measured in meandering lab. channel and India canal and the accuracies show about determination coefficient 0.8. Accordingly, this method will be used in actual field if this study is continuously conducted.

An Analysis on the Stage-Discharge Relation Curve with the Temporal Variation of the River Bed -at Indogyo Station of the Han River- (하상(河床) 경년변화(經年變化)에 따른 수위(水位)-유량(流量) 관계곡선(關係曲線)의 해석(解析) -한강(漢江) 인도교지점(人道橋地點)을 중심(中心)으로-)

  • Cheong, Heung Soo;Lee, Won Hwan;Lee, Jae Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.61-71
    • /
    • 1988
  • The stage-discharge relation curve(rating curve) is the basic formula in hydrologic analysis. It plays an important role in converting to the discharge from available flood water level data including the daily mean stage. However, the river induces a cross section change at the gauging station because of the composed material of the river bed and three processes of the stream flow; i.e., erosion, transportation, and sedimentation. Rating curve has to be revised according to the temporal variation of the river bed due to the those factors. In this study, the basic rating curve is developed with respect to the current river bed to convert the existing rating curves and also to seize the hydraulic and geometric characteristics for the temporal variation of the river bed, relationships among the basic rating curve and the existing rating curves, water level, cross sectional area, and flow velocity are analyzed. Indogyo station, which is not only the key station of the Han river but also greatly changed the river bed after completion of the Han river development plan during the year 1983 to 1986, was chosen for the study. In this study, the river bed is assumed in a dynamic equilibrium condition. The basic rating curve is developed using hydrologic data of the physical year of 1987. For a given discharge, relationships for conversion of previous data, stage and velocity, the current one are formulated. To verify the usefulness of the relationships, stage-cross sectional area and stage velocity formula are also derived. Both hydrologic method using continuity equation and statistical method by the rating curve are compared and checked, then the validation of the both are positively shown.

  • PDF

Application of Load Duration Curve and Estimation of Delivery Ratio by Flow Durations Using Discharge-Load Rating Curve at Jiseok Stream Watershed (유량-부하량관계식을 이용한 지석천 유역의 부하지속곡선 적용 및 유황별 유달율 산정)

  • Park, Jinhwan;Kim, Kapsoon;Hwang, Kyungsup;Lee, Yongwoon;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.523-530
    • /
    • 2013
  • This study has been carried out to clarify the characteristics of discharge and pollutant loading according to flow conditions at jiseok stream watershed (JSW). A flow rate and pollutant load in the study watershed were estimated by equation of stage-discharge and discharge-loads rating curve. By using the methods above, I've evaluated the water quality (WQ) of the JSW if it is satisfied with the standard target. I've collected the data of BOD and T-P from the JSW every 8 days for the duration of 12 months. And then, I've schematized the data upon the load duration curve and the results showed me that the WQ of JSW was satisfied with the standard target. I've also collected the same data every each day for the duration of 12 months from JSW and have schematized the data again. And the results showed that it also was satisfied with the standard target. To be concluded, I've determined that point pollution sources of JSW gives more significant impacts to the WQ than non-point pollution sources of JSW and hence, as time goes, point pollution sources will keep depriciating the WQ of JSW. Therefore, further efforts will be required to JSW to maintain the WQ.

Storage Estimation of Irrigation Reservoir by Water Balance Analysis (물수지 분석을 통한 관개용 저수지의 저수율 추정)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Koo, Ja-Woong;Kim, Young-Ju
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.4 s.21
    • /
    • pp.1-7
    • /
    • 2003
  • This study was conducted to seek the effective water management method of the irrigation reservoirs. Joongpyong reservoir was selected for the hydrologic monitoring, and investigated from May in 1999 to December in 2001. The water level and amount of outlet discharge were measured, the stage discharge equation as a rating curve was induced, and which were compared to the irrigation water requirements calculated by a daily simulation model. The water balance of Joongpyong reservoir was analyzed, mainly on the reservoir storage ratio during irrigation period. Comparing the observed storage and simulation data, the results of the simulation were well agreed with the measured data.

Water Quality Characteristics Evaluation by Flow Conditions Using Load Duration Curve - in Youngbon A Watershed - (부하지속곡선을 이용한 유량 조건별 수질특성 평가 - 영본A 유역을 대상으로 -)

  • Park, Jinhwan;Kim, Kapsoon;Jung, Jaewoon;Hwang, Kyungsup;Moon, Myungjin;Ham, Sangin;Lim, Byungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.319-327
    • /
    • 2013
  • This study was conducted to identify runoff characteristics of pollutants using flow duration curve(FDC) and load duration curve(LDC) in Youngbon A watershed during 2009~2011. A flow rate and pollutant load in the study watershed were estimated by equation of stage-discharge and discharge-loads rating curve. From these methods, BOD, T-N, and T-P have evaluated whether water quality standards would have attained. Results showed that BOD loads of about 50% plotted above the LDC, while T-N and T-P loads of about 50% plotted below the curve. It means that BOD of about 50% have exceeded the water quality criteria, while T-N and T-P of about 50% have complied with the water quality standards. Meanwhile, BOD, TN and T-P loads plotted above the LDC of low flows, implying that they were more affected by point pollution sources than nonpoint pollution sources in the study watershed.

A Research on Application of Flood Simulation at Ungaged Basin for Water Management in the Ara River (아라천 물관리를 위한 미계측 유역 홍수 모의 적용성 고찰)

  • Lee, Sang Jin;Noh, Joon Woo;Kim, Joo Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.169-174
    • /
    • 2012
  • For efficient water management in the Ara River during the flood season, applicability of flood simulation model in the ungaged Gulpo watershed has been tested. In the Gulpo River watershed, fundamental hydrologic data such as water level and flowrates are very limited and selection of the reliable hydrologic parameters are very important for model application. This study tested reliability of parameters estimated using the empirical equation based on the HEC-HMS runoff simulation. Also coupled with HEC-RAS hydraulic routing model, simulated flowrates from HEC-HMS has been compared with the observed water levels collected at the upstream and downstream of the Gyulhyun Weir station during the flood event in 2010. Based on this information, stage-discharge curve has been developed and its reliability has been tested for flood event in 2011.

A Study on urban runoff by deter ministic simulation techniques. (확정론적 모의기법에 의한 도시유출 해석에 관한 연구)

  • 이은영;강관원
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.37-47
    • /
    • 1982
  • In the past, the design flow of the urban storm drainage systems has been used largely on a basis of empirical and experience, and the rational formula one of empirical method has been widely used for our country, as well as world wide. But the empirical method has insufficient factor because minimal consideration is given to the relationship of the parameters in the equation to the processes being considered, and considerable use of experience and judgment in setting values to the coefficients in the equation is made. The postcomputer era of hydrology has brought an acceleration development of mathematical methods, thus mathematical models are methods which will greatly increase our understanding in hydrology. On this study, a simple mathematical model of urban presented by British Road Research Laboratory is tested on urban watersheds in Ju An Ju Gong Apartment. The basin is located in Kan Seog Dong, Inchon. The model produces a runoff hydrograph by applying rain all to only the directly connected impervious area of the basin. To apply this model the basin is divided into contributing areas or subbasins. With this information the time area for contributing is derived. The rainfall hyetograph to design storm for the basin flow has been obtained by determination of total rainfall and the temporal distribution of that rainfall determined on the basis of Huff's method form historical rainfall data of the basin. The inflows from several subbaisns are successively routed down the network of reaches from the upstream end to the outlet. A simple storage routing technique is used which involves the use of the Manning equation to compute the stage discharge curve for the cross-section in question. To apply the model to a basin, the pattern of impervious areas must be known in detail, as well as the slopes and sizes of all surface and subsurface drains.

  • PDF

Analysis of Runoff Characteristics for a Small Forested Watershed Using HYCYMODEL - At a watershed in Mt. Palgong - (물순환(循環)모델에 의한 산지소유역(山地小流域)의 유출특성(流出特性) 분석(分析) - 팔공산유역(八空山流域)을 대상(對象)으로 -)

  • Park, Jae Chul;Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.564-575
    • /
    • 2000
  • This study was carried out to reveal characteristics of long-term runoff by using HYCYMODEL in a small forested watershed. From May to September in 1998 and in 1999, the fitness of HYCYMODEL and runoff characteristics were estimated by HYCYMODEL using rainfall and discharge at the experimental watershed. The function of stage and discharge in the experimental watershed was determined as following equation $Q=11.148H^{2.5867}$($R^2=0.9956$). From May to September in 1998 and in 1999, the runoff rates were 57.7% in 1998 and 87.1% in 1999 at the experimental watershed. The discharge was assumed to be increased because of rainfall intensity difference and thinning. By applicability test, the HYCYMODEL showed good estimation of runoff by optimized fifteen parameters. Comparing runoff characteristics before and after thinning by calculating through HYCYMODEL, direct runoff and base runoff increased 4%, 7%, respectively as evapotranspiration decreased 11%. Parameters $D_{50}$ and $K_h$, which were related to the direct run, and a parameter $K_u$, which was related to the baseflow, were assumed to indicate that forest was changed by the effect of thinning and weathering process of bed rock.

  • PDF