• 제목/요약/키워드: Stack-cell

검색결과 587건 처리시간 0.022초

소형 고분자 연료전지 스택의 체결압력에 따른 성능 특성 (The Effect of Stack Clamping Pressure on the Performance of a Miniature PEMFC Stack)

  • 김병주;임성대;손영준;김창수;양태현;김영채
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.499-504
    • /
    • 2009
  • The effect of gas diffusion layer (GDL) compression caused by different stack clamping pressures on fuel cell performance was experimentally studied in a miniature 5-cell proton exchange membrane fuel cell (PEMFC) stack. Three stacks with different GDL compressions, 15%, 35% and 50%, were prepared using SGL 10BC carbon fiber felt GDL and Gore 57 series MEA. The PEMFC stack performance and the stack stability were enhanced with increasing stack clamping pressure resulting in the best performance and stability for the stack with higher GDL compressions up to 50%. The excellent performance of the stack with high GDL compression was mainly due to the reduced contact resistance between GDL and bipolar plate in the stack, while reduced gas permeability of the excessively compressed GDL in the stack hardly affected the stack performance. The high stack clamping pressure also resulted in excessive GDL compression under the rib areas of bipolar plate and large GDL intrusion into the channels of the plate, which reduced the by-pass flow in the channels and increase gas pressure drop in the stack. It seems that these phenomena in the highly compressed stack enhance the water management in the stack and lead to the high stack stability.

고효율 가압형 고분자전해질 연료전지 셀스택 개발 (Development of a High Efficiency Polymer Electrolyte Membrane Fuel Cell Stack under Pressurized Operating Conditions)

  • 한인수;서하규;정지훈;김민성;신현길;허택욱;조성백
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.125.1-125.1
    • /
    • 2010
  • A high efficiency polymer electrolyte membrane (PEM) fuel cell stack was developed for pressurized pure hydrogen and oxygen supplying conditions. The design objective for the cell stack was to maximize the electric efficiency and to minimize exhaust-gas emissions from it simultaneously. To achieve this objective, the cell stack was designed to use pure hydrogen and oxygen as fuel and oxidant, respectively, and to be operated under high gas inlet pressures and in a stage-wise dead-end operation mode. Major components constituting the cell stack, such as membrane electrode assembly, bipolar-plate, and gasket, have been developed to meet a target durability even in severe operating conditions: high gas inlet pressures and usage of pure oxygen. A high-power fuel cell stack was assembled using these components to verify the performance. The cell stack showed a good performance in terms of the efficiency and maximum power output.

  • PDF

소형 모듈 스택을 이용한 가정용 연료전지 성능의 실험적 고찰 (An Experimental Study of Short Stack on the Performance of the Proton Exchange Membrane Fuel Cell for the Residential Power generation)

  • 최원석;김용모;유상석;이영덕;홍동진;안국영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 2008
  • Proton Exchange Membrane Fuel Cell (PEMFC) is an attractive candidate for residential power generator due to fast start-up and stop, high efficiency, low emission, and high power density. In this study, we employ short module stack to understand the performance of the unit cell of the stack in terms of operating temperatures. To simulate the practical fuel cell stack of residential power generator, the structure and active area of the short module stack is kept the same as that of the practical fuel cell. The results shows that the electric potential of short module stack is different from the number of cells times the potential of unit cell because of cell-to-cell variation.

  • PDF

Intermodulation 방법에 의한 자동차용 연료전지 스택의 실시간 진단방법 개발 (Development of Real-time Diagnosis Method for PEMFC Stack via Intermodulation Method)

  • 이용현;유승열;김종현
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.76-83
    • /
    • 2014
  • During PEMFC(Proton Exchange Membrane Fuel Cell) operation monitoring and diagnosis are important issues for reliability and durability. Stack defect can be followed by a critical cell voltage drop in the stack. One method for monitoring the cell voltage is CVM(Cell Voltage Monitoring), where all cells in the stack are electrically connected to a voltage measuring system and monitored these voltages. The other methods are based on the EIS(Electrochemical Impedance Spectroscopy) and on nonlinear frequency response. In this paper, intermodulation(IM) method for diagnosis PEMFC stack is introduced. To detect one or more critical PEMFC cell voltage PEMFC stack is excited by two or more test sinusoid current, and the frequency response of the stack voltage is analyzed. If one or more critical cell voltage exists, higher harmonics on the voltage frequency spectrum will appear. For the proposed IM method, stack simulation and experiments are conducted.

전고조파 왜율 분석을 통한 연료전지 스택 고장진단 기술 (Technology of Fuel cell stack fault detection by THDA)

  • 김억수;박현석;강선두;엄정용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.90.1-90.1
    • /
    • 2011
  • This technology is applicable to Electrical vehicle that using Energy from Hydrogen Fueled Cell. Electricity & water is got from chemical reaction between H2 & O2 in stack. This technology is used when fault diagnosis of Fuel cell is needed. It is General method that measure each cell's voltage of stack for fault diagnosis. but, this technology is method of measuring entire voltage of stack. For this reason, fault diagnosis system is simplified and cost of system is lower than previous one. In normal stack condition, characteristic graph of voltage-current has linearity. In fault stack condition, it has non-linearity. we use this characteristic to diagnosis of stack fault. In this technology, Specific frequency current is injected into stack & Stack voltage is measured in response. After that, stack voltage difference is analyzed to diagnosis of stack fault. Presently, Development of current injection module & basic program of THDA is finished. in future we will develop the technology of precise measurement technology about entire stack voltage.

  • PDF

연료 전지 냉각판의 최적 설계 (A Study on the Optimization of Fuel-Cell Stack Design)

  • 홍민성;김종민
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.92-96
    • /
    • 2003
  • Feul-Cell system consists of fuel reformer, stack and energy translator. Among these parts, stack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack and control of coolant are needed. Especially, oater or air is used as a coolant to dissipate heat. The different temperature of each electric cell after cooling affects the performance of the stack. Therefore, it is necessary that the relationship between coolant hearing rate, width of stack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

Experimental Analyses of Cell Voltages for a Two-cell PEM Stack Under Various Operating Conditions

  • Park, Sang-Kyun;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.881-890
    • /
    • 2011
  • Analyses of performance and behavior of the individual PEM fuel cells (PEMFC) under different operating conditions are of importance optimally to design and efficiently to operate the stack. The paper focuses on experimental analyses of a two-cell stack under different operating conditions, which performance and behavior are measured by the voltage of a cell as well as the stack. Experimental parameters include stoichiometric ratio, temperature of the air supplied under different working stack temperatures and loads. Results showed that the cell voltages are dominantly influenced by the temperature of the air supplied among others. In addition, an inherent difference between the first and the second cell voltage exists because of the tolerances of the cell components and the resulting different over-potentials at different equilibrium states. Furthermore, it is shown that the proton conductivity in the membranes conditioned by the humidity in the cathode channel highly affects the voltage differences of the two cells.

연료전지 채널 내 균일한 유량분배를 위한 연료전지 스택의 매니폴드 디자인 최적화 연구 (Optimizing the Manifold Design of a Fuel Cell Stack for Uniform Distribution of Reactant Gases within Fuel Cell Channels)

  • 조아래;강경문;오성진;주현철
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.11-19
    • /
    • 2012
  • The main function of fuel cell manifold is to render reactants distribution as uniform as possible into a fuel cell stack. The purpose of this study is to numerically investigate the effects of stack manifold design on reactants distribution within a fuel cell stack. Four manifold designs with different manifold entrance shapes (expansion or diffuser) and different values of the extra width between the cell outer channel and manifold side wall are considered and applied to the fuel cell stack consisting of 50 cells. Since the fuel cell stack geometry involves several millions of grid points for numerical calculations, a parallel computing methodology is employed to substantially reduce the computational time and overcome the memory requirement. The numerical simulations are carried out and calculated results clearly demonstrate that both the manifold entrance shape and extra width have a substantial influence on manifold performance, controlling the degree of flow separation and entrance length for fully developed flow in the manifold channel. Finally, we suggest the optimum design of fuel cell manifold based on the simulation results.

새로운 원반형 구조의 분리판을 사용한 소형 용융탄산염 스택의 운전 (Operation of A Small MCFC Stack Using New Designed Circular Separator)

  • 한종희;노길태;윤성필;남석우;임태훈;홍성안
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.229-235
    • /
    • 2003
  • A 50W class MCFC stack was operated in order to test a new design of the circular shaped separator. in the new design, the anode gas was supplied into the stack and was exhausted out of the stack after the anode reaction. The exhausted gas was reacted with the cathode gas supplied with excess oxygen in the vessel in which the stack was placed. Then the reacted gas flowed into the cathode side of the stack and was exhausted through the outlet located in the center of the stack. The average voltage of the single cells in the stack was 0.835V under the current density of $150mA/cm^2$, initially, and the degradation rate of the stack voltage was 1.7%/1,000h. High stack voltage with good stability of the present stack was due to the small temperature gradient in the stack. The small temperature gradient as well as the easiness of temperature control was the result of the new configuration of the separator which utilized the heat of the combustion reaction between anode outlet gas and the cathode inlet gas for heating the stack.

3차원 CFD 시뮬레이션을 활용한 고분자전해질 연료전지 스택의 매니폴드 크기 최적화 (Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations)

  • 정지훈;한인수;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.386-392
    • /
    • 2013
  • Polymer electrolyte membrane (PEM) fuel cell stacks are constructed by stacking several to hundreds of unit cells depending on their power outputs required. Fuel and oxidant are distributed to each cell of a stack through so-called manifolds during its operation. In designing a stack, if the manifold sizes are too small, the fuel and oxidant would be maldistributed among the cells. On the contrary, the volume of the stack would be too large if the manifolds are oversized. In this study, we present a three-dimensional computational fluid dynamics (CFD) model with a geometrically simplified flow-field to optimize the size of the manifolds of a stack. The flow-field of the stack was simplified as a straight channel filled with porous media to reduce the number of computational meshes required for CFD simulations. Using the CFD model, we determined the size of the oxidant manifold of a 30 kW-class PEM fuel cell stack that comprises 99 cells. The stack with the optimal manifold size showed a quite uniform distribution of the cell voltages across the entire cells.