• Title/Summary/Keyword: Stack Coolant

Search Result 29, Processing Time 0.021 seconds

A Study on the Optimization of Fuel-Cell Stack Design (연료 전지 냉각판의 최적 설계)

  • 홍민성;김종민
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.92-96
    • /
    • 2003
  • Feul-Cell system consists of fuel reformer, stack and energy translator. Among these parts, stack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack and control of coolant are needed. Especially, oater or air is used as a coolant to dissipate heat. The different temperature of each electric cell after cooling affects the performance of the stack. Therefore, it is necessary that the relationship between coolant hearing rate, width of stack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

Optimization of Fuel-cell stack design using CFD-ACE (CFD-ACE를 이용한 연료 전지 냉각판의 최적 설계)

  • 홍민성;김종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.14-18
    • /
    • 2003
  • Feul-cell system consists of fuel reformer, stack and energy translator. Among these parts, slack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack, and control of coolant are needed. Especially, water or air is used as a coolant to dissipate heat. The different temperature of each electric cells after cooling and the high temperature of the stack affect the performance of the stack, Therefore, it is necessary that the relationship between coolant, healing rate, width of slack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

  • PDF

A Study on Sensing Method of the Stack Coolant Deficiency for FCEV (연료전지 차량 스택 냉각수 부족 감지 방법에 관한 연구)

  • Kim, Hyung Kook;Han, Su Dong;Nam, Gi Young;Kim, Chi Myung;Park, Yong Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.525-532
    • /
    • 2014
  • The sensing of a stack coolant deficiency is very important in that cooling performance of a fuel cell, overheating prevention of a stack or coolant heater. This paper explains the performance comparison between the coolant contact/noncontact level sensors and coolant deficiency sensing logic using the pressure sensor in a stagnant or circulating flow. Throughout the comparison, the pressure sensor is more suitable than the other sensors in terms of the precision, fast response, sensing frequency. After the experiment, the pressure sensor is equipped to an FCEV(Fuel Cell Electric Vehicle) to verify sensing definitely. There was no miss-sensing using pressure sensor while FCEV runs in the conditions of the paved road and cross country road.

Analysis of Thermal Effect by Coolant Plate Number in High-Temperature Polymer Electrolyte Membrane Fuel Cell Stack (고온형 고분자 전해질 연료전지 스택 내부의 냉각판 수가 스택에 미치는 열 영향성의 수치적 연구)

  • Choi, Byung Wook;Ju, Hyun Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.2
    • /
    • pp.127-135
    • /
    • 2015
  • High-Temperautre Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) with phosphoric acid-doped polybenzimidazole (PBI) membrane has high power density because of high operating temperature from 100 to $200^{\circ}C$. In fuel cell stack, heat is generated by electrochemical reaction and high operating temperature makes a lot of heat. This heat is caouse of durability and performance decrease about stack. For these reasons, heat management is important in HT-PEMFC. So, we developed HT-PEMFC model and study heat flow in HT-PEMFC stack. In this study, we placed coolant plate number per cell number ratio as variable and analysed heat flow distribution in stack.

Design of a Heat Release System for Fuel Cell Vehicles (연료전지 자동차 열방출 시스템의 설계)

  • Kim, Sung-Chul;Park, Min-Su;Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.545-548
    • /
    • 2005
  • There is a close relation between the heat generation in the fuel cell stack and the fuel cell performance. In PEM fuel Gell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the stack power general ion can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cel1 output power can be carried out to maximize the performance of fuel cell system.

  • PDF

Design of a Heat Release System for Fuel Cell Vehicles (연료전지 자동차 열방출 시스템의 설계)

  • Kim, Min-Soo;Kim, Sung-Chul;Park, Min-Su;Jung, Seung-Hun;Yoon, Seok-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.49-54
    • /
    • 2005
  • There is close relation between the heat generation in the fuel cell stack and the fuel performance. In PEM fuel cell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the slack power generation can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cell output power can be carried out to maximize the performance of fuel cell system.

  • PDF

Numerical study on the thermal performance characteristics of the stack system for FCEV (연료전지 자동차용 스택 시스템의 열적 성능 특성에 관한 수치적 연구)

  • Lee, Ho-Seong;Lee, Moo-Yeon;Won, Jong-Phil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3708-3713
    • /
    • 2015
  • The objective of this study is to numerically investigate the heat transfer rate for evaluating the thermal performances of the stack thermal system using the commercial software. In order to perform this, the cooling performances of the stack system for fuel cell electric vehicle were tested under both driving road conditions including the general driving road and uphill driving road and operating conditions with and without of the air conditioning system. The heat transfer rate of the stack radiator for the stack system was increased with the increase of the inlet air flow velocity. The heat transfer rate of the stack radiator increased by 105.3% at the coolant flow rate of 20 l/min and 221.3% at the coolant flow rate of 120 l/min with the increase of the air flow velocity from 2 m/s to 10 m/s. $9.45^{\circ}C$ of inlet coolant temperature of the stack radiator at the severe driving condition of the slope of 8% and velocity of 50 km/h showed higher 85.3% than $5.1^{\circ}C$ of inlet coolant temperature at the general driving condition of the slope of 0% and velocity of 120 km/h. In addition, as the fuel cell electric vehicle with the air conditioning system operation was driving under severe uphill driving condition, the radiator coolant temperature for a stable stack operation could be exceeded over $70^{\circ}C$.

An Experimental Study of Coolant Operating Conditions in a Polymer Electrolyte Membrane Fuel Cell (고분자연료전지의 냉각수 운전 조건에 관한 실험적 연구)

  • Cheong, Seong-Ir;Kim, Tae-Wan;Lee, Chang-Gun;Kim, Doo-Hyun;Ahn, Young-Chull;Lee, Jae-Keun;Hwang, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.541-546
    • /
    • 2008
  • A coolant operating condition in al fuel cell stack was an important factor to determine the temperature distribution which affected the fuel cell performance and relative humidity. In this study, the fuel cell performance was evaluated as a function of the coolant flow rate with the range of $0.1{\sim}0.8$ liter/min cell and the coolant inlet temperature of $20{\sim}82^{\circ}C$. The cell temperature increased with increasing the coolant inlet temperature and with decreasing the coolant flow rate. The coolant inlet temperature and flow rate to maintain the better performance of the fuel cell were in the range of $45{\sim}60^{\circ}C$ and $0.2{\sim}0.4$ liter/min cell, respectively. The experimental results showed that the optimal heat removal rate from the stack by coolant was $0.4{\sim}0.6W/cm^2$ cell.

Coolant Leak Effect on Polymer Electrolyte Membrane Fuel Cell (고분자전해질연료전지의 냉각수 누설에 대한 연구)

  • Song, Hyun-Do;Kang, Jung-Tak;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.301-305
    • /
    • 2007
  • The performance of polymer electrolyte membrane fuel cell could be decreased due to coolant leaked from connection part. Micro pump was used to put small amount of coolant and investigate the effect on fuel cell. The stoichiometric ratio of hydrogen/air was 1.5/2.0, both side of gas was fully humidified, and current density of $400mA/cm^2$ was used as standard condition in this experiment. Constant current method was used to check performance recovery from coolant effect in 3 cell stack. The performance was recovered when coolant was injected in cathode side. On the other hand, the performance was not recovered when coolant was injected in anode side. Ethylene glycol could be converted to CO in oxidation process and cause poisoning effect on platinum catalyst or be adhered on GDL and cause gas diffusion block effect resulting performance decrease. Water with nitrogen gas was supplied in anode side to check performance recovery. Polarization curve, cyclic voltammetry, electrochemical impedance spectroscopy was used to check performance, and gas chromatography was used to check coolant concentration. Constant current method was not enough in full recovery of performance. However, water injection method was proved good method in full recovery of performance.

The construction and performance Investigation of 1/2 Wavelength Thermoacoustic Refrigerator with Helium Refrigerant (헬륨을 냉매로 사용한 1/2파장 열음향 냉동기의 실험 및 성능평가)

  • Choi, Doo-Won;Kim, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.471-476
    • /
    • 2006
  • Thermoacoustic refrigerators are operated with acoustic power to pump heat. The acoustic standing wave displaces the gas In the channels of the stack while compressing and expanding. The thermal interaction between the osillating gas he surface of the stack generates an acoustic heat pumping. in this study, a thermoacoustic refrigerator is composed of a resonator of 4cm diameter, stack of plates, heat exchangers and cooling part. Length of the hot heat exchangers, the stack of plates and the cold heat exchanger are 9mm, 8mm and 6mm respectively. Using helium as a coolant at frequency of 516Hz, the cold-part temperature of exchanger fell to $-19.0^{\circ}C$ after 1hours.

  • PDF