• Title/Summary/Keyword: Stable surface

Search Result 2,182, Processing Time 0.036 seconds

Design of Robot Controller using Time-Varying Sliding Surface (시변 슬라이딩 평면을 이용한 로봇 제어기의 설계)

  • Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.359-361
    • /
    • 1993
  • In this paper, a variable structure controller with time-varying sliding surface is proposed for robot manipulators. The proposed time-varying sliding surface ensures the existence of sliding mode from an initial state, while the contentional sliding surface cannot achieve the robust performance against parameter variations and disturbances before the sliding mode occurs. Therefore, error transient can be fully prescribed in advance for all time. Furthermore, it is shown that the overall system is globally exponetially stable. The efficiency of the proposed method for the trajectory tracking has been demonstrated by simulations.

  • PDF

Effect of Different Supporting Surfaces on Trunk Muscle Activities during Core Stabilization Exercises (지지면 차이에 따른 안정화 운동 시 몸통의 근활성도에 미치는 효과)

  • Chang, Chung-Hoon;Ryaung, Seung-Hun;Kang, Kyung-Du;Kim, Jung-Geun;Park, Hae-Young;Min, Ju-Ri;Park, Hyeog-Su;Park, Hyeong-Eun;Kim, Hyun-Jung;Park, So-Yeon;Kim, Ha-Jung;Han, Sang-Wan
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.9 no.2
    • /
    • pp.31-38
    • /
    • 2011
  • Purpose : The purpose of this study was to compare the effects of different supporting surfaces on trunk muscle activities during core stabilization exercises. Methods : A total of 20 healthy college students participated in this study for 6 weeks. In this study, we divided participants into a stable surface exercise group and an unstable surface exercise group. Each group performed core stabilization exercises of Curl-ups, Bridges, and Quadrupedal position. Core stabilization exercises were performed 3 times a week for 30 minutes during 6 weeks. The stable surface exercise group used a yoga mat while the unstable surface exercise group used AERO step. This study was designed using pre-test and post-test measurements. We used Surface Electromyograpy (sEMG) to measure for the rectus abdominis, external abdominal oblique, and multifidus muscle of trunk muscle activities. Data was processed using a paired sample t-test on SPSS 18.0. Results : For the stable surface exercise group there was a meaningful improvement in left rectus abdominis, left external abdominal oblique, and right multifidus (p<0.05). For the unstable surface exercise group, a meaningful improvement was seen in the left external abdominal oblique and right multifidus. Conclusion : From the experiment, we concluded that differences in surface can make various degrees of improvement in muscles activities, which suggests patients can choose a better option under their own conditions when planning to have a core stability exercise.

Electrochemical Deposition of Copper on Polymer Fibers

  • Lim, Seung-Lin;Kim, Jaecheon;Park, Jongdeok;Kim, Sohee;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.132-138
    • /
    • 2016
  • In this study, we report the fabrication of functional complex fibers, which have been studied widely globally for numerous applications. Here, we fabricated conductive complex fibers with antibacterial properties by coating metal ions on the surface of plastic (polypropylene) fibers using the electroless and electrochemical deposition. First, we polished the polypropylene melt-blown fiber surface and obtained an absorbing Pd seed layer on its surface. Subsequently, we substituted the Pd with Cu. Bis-3-sulfopropyl-disulfide disodium salt (SPS), polyethylene glycol (PEG), and ethylene thiourea (ETU) were used as the brightener, carrier, and leveler, respectively for the electroplating. We focused on most achieving the stable plating condition to remove dendrites, which are normally during electroplating metals so that smooth layer is formed on the fiber surface. The higher the amount of SPS, the higher was the extent of irregular plate-like growth. Many irregularities in the form of round spheres were observed with increase in the amount of PEG and ETU. Hence, when the additives were used separately, a uniform coating could not be obtained. A stable coating was obtained when the three additives were combined and a uniform 5-9 μm thick copper layer with a stable morphology could be obtained around the fiber. We believe that our results can be applied widely to obtain conductive fibers with antibacterial properties and are useful in aiding research on conductive lightweight composite fibers for application in information technology and robotics.

The Effects of Supporting Surfaces and Visual Existence on the Balance Ability when Exercising Squat (스쿼트 운동 시 지지면의 차이와 시각 여부가 균형능력에 미치는 영향)

  • Kim, Myoungchul;Lee, Hyunjae;Lee, Sumin;Kim, Haein;Park, Mihye
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.2
    • /
    • pp.77-87
    • /
    • 2018
  • Purpose : The purpose of this study was to figure out the changes of normal people's balance ability when squat exercise in the condition of visual blocked or non-visual blocked on the stable or the unstable surfaces. Also, this study intended to assess balance ability more objectively and in a more diversified ways by using Biorescue. Methods : This study randomly assigned all the subjects to 4 groups; visual blocked or non-visual blocked on the stable surface or the unstable surface. Subjects were given 3 sets of squat exercises per day, 3 times a week for 3 weeks. At the beginning and the end of the exercise for 3 weeks, subjects measured balance ability using Biorescue and Lower Quarter Y-balance Test to evaluate the improvements of before and after. Results : All the groups showed the differences in the balance ability on the Biorescue and The Lower Quarter Y-balance test before and after the exercise. Among these groups, a group with condition of visual blocked on the stable surface showed the highest improvements. And also, it showed significant differences compared to other groups (P>0.05). Conclusion: Using squat combined with variables according to this study, it can be utilized for rehabilitation of the aged and preparation of healthier life.

Difference in Muscle Activities According to Stability on Support Surface During Plank Exercise

  • Cho, Yong-Ho;Choi, Jin-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.73-77
    • /
    • 2017
  • PURPOSE: The present study aimed to measure muscle activities in the pectoralis major, the erector spinae, and the quadriceps femoris according to support surface states of arms and legs during plank exercise. METHODS: The subjects of this study were 21 healthy males in their 20s and their muscle activities at three states were measured as follows: The first state was where the support surface of arms and legs was stable. The second state was where only arms were unstable, and the third state was where only legs were unstable. Electromyography (EMG) was used to measure muscle activities. Pectoralis major, quadriceps femoris, and elector spinae were measured for muscle activities. RESULTS: The muscle activities in the pectoralis major were statistically high when arms were unstable. The muscle activities in the quadriceps femoris were statistically high when legs were unstable. The muscle activities in the erector spinae were higher when arms and legs were unstable compared to that at the stable support surface. No significant difference was revealed statistically when arms and legs were unstable. CONCLUSION: If the instability of arms and legs is employed during plank exercise, exercise on the upper and lower bodies or the erector spinae is expected to be more effective.

Coverage-dependent adsorption behavior of monoethanolamine on TiO2 (110)

  • Sohn, So-Dam;Kim, Su-Hwan;Kwak, Sang-Kyu;Shin, Hyung-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.126-126
    • /
    • 2016
  • Understanding adsorption behavior organic molecules at oxide surfaces is very important for the application of organic-inorganic hybrid materials. Recently, monoethanolamine (MEA) adsorbed on $TiO_2$ surface has received great interests because it can lower the work function of $TiO_2$ in photo-electronic devices such as OLED and solar cells. In this study, we investigated the role of surface defects in adsorption behaviors of MEA at the rutile $TiO_2$ (110) surface by combined study of scanning tunneling microscopy and density functional theory calculations. Our results revealed that oxygen vacancy is the most stable adsorption site for MEA on $TiO_2$ (110) surface at low coverage. As coverage increases, the oxygen vacancies are occupied with the molecules and MEA molecules start to adsorb at Ti rows at higher coverages. Our results show that the defects at oxide surfaces and the intermolecular interactions are important factors for determining stable adsorption structure of MEA at $TiO_2$ (110) surfaces.

  • PDF

Influence of Intermolecular Interactions on the Structure of Copper Phthalocyanine Layers on Passivated Semiconductor Surfaces

  • Yim, Sang-Gyu;Jones, Tim S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2247-2254
    • /
    • 2010
  • The surface structures of copper phthalocyanine (CuPc) thin films deposited on sulphur-passivated and plane perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)-covered InAs(100) surfaces have been studied by low energy electron diffraction (LEED) and van der Waals (vdW) intermolecular interaction energy calculations. The annealing to $300^{\circ}C$ and $450^{\circ}C$ of $(NH_4)_2S_x$-treated InAs(100) substrates produces a ($1{\times}1$) and ($2{\times}1$) S-passivated surface respectively. The CuPc deposition onto the PTCDA-covered InAs(100) surface leads to a ring-like diffraction pattern, indicating that the 2D ordered overlayer exists and the structure is dominantly determined by the intermolecular interactions rather than substrate-molecule interactions. However, no ordered LEED patterns were observed for the CuPc on S-passivated InAs(100) surface. The intermolecular interaction energy calculations have been carried out to rationalise this structural difference. In the case of CuPc unit cells on PTCDA layer, the planar layered CuPc structure is more stable than the $\alpha$-herringbone structure, consistent with the experimental LEED results. For CuPc unit cells on a S-($1{\times}1$) layer, however, the $\alpha$-herringbone structure is more stable than the planar layered structure, consistent with the absence of diffraction pattern. The results show that the lattice structure during the initial stages of thin film growth is influenced strongly by the intermolecular interactions at the interface.

A Study of Epitaxial Growth on the Surfactant(Sn) Adsorbed Surface of Ge(111) (RHEED를 이용한 Ge(111)표면의 층상성장에서 Sn의 영향)

  • Kwak, Ho-Weon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.451-455
    • /
    • 2001
  • The epitaxial growth of Ge on the clean and surfactant(Sn) adsorbed surface of Ge(111) was studied by the intensity oscillation of a RHEED specular spot. In the case of epitaxial growth without the adsorbed surfactant, the RHEED intensity oscillation was stable and periodic up to 24ML at the substrate temperature of $200^{\circ}C$. Therefore the optimum temperature for the epitaxial growth of Ge on clean Ge(111) seems to be $200^{\circ}C$. However, in the case of epitaxial growth with the adsorbed surfactant, the irregular oscillations are observed in the early stage of the growth. The RHEED intensity oscillation was very stable and periodic up to 38ML, and the $d2{\times}2$ structure was not charged with continued adsorption of Ge at the substrate temperature of $200^{\circ}C$. These results may be explained by the fact that the diffusion length of Ge atoms is increased by decreasing the activation energy of the Ge surface diffusion, resulted by segregation of Sn toward the growing surface. From the desorption process, the desorption energy of Sn in Ge $\sqrt{5}{\times}\sqrt{5}$ structure is observed to be 3.28eV.

  • PDF

Comparison of Adsorption Configurations between Phenylalanine and Tyrosine on Ge(100)

  • Im, Hui-Seon;Yang, Se-Na;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.216-216
    • /
    • 2011
  • We will investigate the bonding configurations of phenylalanine and tyrosine adsorbed on the Ge(100) surface using CLPES and DFT calculations. First, the C 1s, N 1s, and O 1s spectra obtained at 300 K revealed that both the amine and carboxyl groups of phenylalanine and tyrosine concurrently participated in adsorption on the Ge(100) surface without bond breaking using CLPES, depending on the extent of coverage. In the second place, we confirmed that the "O-H dissociated-N dative bonded structure" is the most stable structure implying kinetically favorable structure, and the "O-H dissociation bonded structure" is another stable structure manifesting thermodynamically advantageous structure using DFT calculations. This tendency turns up both phenylalanine and tyrosine, similarly. Furthermore, through the CLPES data and DFT calculation data, we discovered that the "O-H dissociated-N dative bonded structure" and the "O-H dissociation bonded structure" are preferred at 0.30 ML and 0.60 ML, respectively. Moreover, we found that the phenyl ring of phenylalanine is located in axial position to Ge(100) surface, but the phenyl ring of tyrosine is located in parallel to Ge(100) surface using DFT calculations.

  • PDF

Performance of the Small PEMFC according to Cathode (Cathode에 따른 소형 PEM 연료전지의 성능 변화)

  • Lee, Se-Won;Lee, Kang-In;Park, Min-Soo;Chu, Chong-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.4
    • /
    • pp.283-290
    • /
    • 2008
  • In this paper, experiments with an air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single-cell and 6-cell stack were used in the experiments. The experimental results showed that the open-type cathode flow field plate gave a better performance than the small channel type. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical one. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, the PEMFC generated more stable power in the mass transport loss region. Since stable power in the mass transport region is closely related to the air supply, computational fluid dynamics (CFD) analysis for air-breathing PEMFC of different cathode surface directions was performed.