• Title/Summary/Keyword: Stable region

Search Result 1,098, Processing Time 0.029 seconds

Performance Characteristics of Double-Inlet Centrifugal Blower According to Inlet and Outlet Angles of an Impeller (임펠러 입출구각에 따른 양흡입 원심송풍기 성능특성)

  • Lee, Jong-Sung;Jang, Choon-Man
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.191-199
    • /
    • 2014
  • Effects of design variables on the performance of a double-inlet centrifugal blower have been analyzed based on the three-dimensional flow analysis. Two design variables, blade inlet and outlet angles, are introduced to enhance a blower performance. General analysis code, ANSYS-CFX13, is employed to analyze internal flow and a blower performance. SST turbulence model is employed to estimate the eddy viscosity. Throughout the shape optimization of an impeller at the design flow condition, the blower efficiency and pressure are successfully increased by 4.7 and 1.02 percent compared to reference one. It is noted that separated flow observed near cut-off region can be reduced by optimal design of blade angles, which results in stable flow pattern in the blade passage and increase of a blower performance. The stable flow at the impeller also makes good effects at the outlet of a volute casing.

Spontaneous Vesicle Formation in Aqueous Mixtures of Cationic Gemini Surfactant and Sodium Lauryl Ether Sulfate

  • Cheon, Ho-Young;Jeong, Noh-Hee;Kim, Hong-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.107-114
    • /
    • 2005
  • Molecular aggregates of surfactant molecules consisting of one or more bilayers arranged in a hollow, closed, usually spherical geometry are termed “esicles”or “iposomes” In recent years it has been found that in certain systems the vesicular structure forms spontaneously and is long lived, and it has been suggested that these structures may in fact constitute the equilibrium state in these cases (as is true of micelles) This paper deals with the mixed CMC, vesicles, phase behavior, phase transition, geometrical structure, their formation and characterization in the aqueous solutions of mixed cationic/anionic surfactants systems. TEM micrographs revealed that the vesicles were of spherical shape and that their size was of around 180 nm. The zeta potentials are positive at CGS1-rich regions and negative at SLES-rich regions. In the region where SLES/CGS1 (6/4), the zeta potentials are very small, implying that the vesicles at this surfactant ratio may be less stable. At other surfactant ratios, the vesicles are thought to be stable, supported by large absolute values of zeta potentials and little change in UV absorbance for several months.

A Study on the Evaluation Method of the Operation Stability of a Torque Converter Mounted on Industrial Vehicle (산업차량용 토크컨버터의 작동 안정성 평가 방법에 대한 연구)

  • Kim, Beom-Soo;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.91-98
    • /
    • 2007
  • This paper presents the induced mathematical modeling equations for evaluating the operation stability with automatic transmission of heavy duty vehicle. This theoretical approach indicates that linearized governing equations of system can be converted into eigen-value problems. if the eigen-value has positive number, we can predict the engine operating point locates an unstable operating region. To be a stable state, the unstable operating point diverges toward a stable point which is able to maintain uniform velocity. Based on the previous theoretical analysis, we carry out dynamic simulation to show the behavior of engine operating point and torque converter in transient state. As a result of the dynamic simulation, the suggested theoretical method is found to be reasonable for evaluating the operation stability of a torque converter. In addition, the numerical results explain the engine stops and fluctuating phenomenon in reality.

Optimal Joint Trajectory Generation for Biped Walking of Humanoid Robot based on Reference ZMP Trajectory (목표 ZMP 궤적 기반 휴머노이드 로봇 이족보행의 최적 관절궤적 생성)

  • Choi, Nak-Yoon;Choi, Young-Lim;Kim, Jong-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.92-103
    • /
    • 2013
  • Humanoid robot is the most intimate robot platform suitable for human interaction and services. Biped walking is its basic locomotion method, which is performed with combination of joint actuator's rotations in the lower extremity. The present work employs humanoid robot simulator and numerical optimization method to generate optimal joint trajectories for biped walking. The simulator is developed with Matlab based on the robot structure constructed with the Denavit-Hartenberg (DH) convention. Particle swarm optimization method minimizes the cost function for biped walking associated with performance index such as altitude trajectory of clearance foot and stability index concerning zero moment point (ZMP) trajectory. In this paper, instead of checking whether ZMP's position is inside the stable region or not, reference ZMP trajectory is approximately configured with feature points by which piece-wise linear trajectory can be drawn, and difference of reference ZMP and actual one at each sampling time is added to the cost function. The optimized joint trajectories realize three phases of stable gait including initial, periodic, and final steps. For validation of the proposed approach, a small-sized humanoid robot named DARwIn-OP is commanded to walk with the optimized joint trajectories, and the walking result is successful.

Improvement of the Model for Predicting Swing Check Valve Opening (스윙형 역지 밸브 개도 예측 모델 개선)

  • Kim, Yang-seok;Song, Seok-yoon;Kim, Dae-woong;Park, Sung-keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.315-320
    • /
    • 2004
  • Swing check valves are the most common type of check valve in nuclear power plant and need to be operated property to perform their functions and to keep the valve internals stable. However, for a swing check valve disc to remain stable, the opening characteristics should be identified and the upstream flow velocity should be enough to hold the disc fully open and without motion. Thus it is necessary to develop a model for predicting the flow velocity for a given disc opening. In the present study, the disc positions with mean flow velocity were measured for 3 inch and 6 inch swing check valves. Comparison of the measurements with the existing models showed that the models underestimate the mean flow velocity for a given disc position. Therefore, the existing model for predicting swing check valve disc position was improved with the realistic disc impingement area perpendicular to the flow stream and the experimental data. The result showed that the improved model with the best estimate of kb = 0.04 predicts well the disc openings of 6 inch swing check valve, especially in the low velocity region. For better prediction of the disc opening at high flow velocity, however, it is recommended to develop a kb correlation with the disc angle.

  • PDF

A Study on the Production Environment of Apparel Manufacture (의류제조업체의 생산환경에 관한 연구)

  • Sun-Hee Lee;Mi-A Suh
    • The Research Journal of the Costume Culture
    • /
    • v.8 no.1
    • /
    • pp.30-39
    • /
    • 2000
  • The purpose of this study were to 1) identify types and levels of production environments, 2) classify apparel manufacturers based on production environments and 3) investigate relationship between characteristics of apparel manufacturers and production environment. Apparel manufacturer's characteristics included product line and the number of employees. For this study, the questionnaires were administered to 215 apparel manufacturers in seoul and Kyung-gi region from Feb. to Mar. 1998. Employing a sample of 201, data were analyzed by factor analysis, descriptive statistics, cluster analysis, cluster analysis, discriminant Analysis, and multivariate analysis of variance. The following are the results of this study : 1. The production environment was identified as three types such as complexity of product environment, uncertainty of demand/supply environment and uncertainty of worker environment. 2. Based on three types of the production environment, apparel manufacturers were classified into stable group, uncertain group and complicated group. 3. With respect to product line, men's wear manufacturers were lied the most high complexity of product environment, casual wear and knit wear were lied the most frequently uncertainty of worker environment. With respect to the number employees, apparel manufacturers comprising 50∼99 employees were lied the most high complexity of product environment, while those comprising 100∼299 employees the most high demand/supply environment.

  • PDF

Dynamic interaction analysis of actively controlled maglev vehicles and guideway girders considering nonlinear electromagnetic forces

  • Min, Dong-Ju;Lee, Jun-Seok;Kim, Moon-Young
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • This study intends to explore dynamic interaction behaviors between actively controlled maglev vehicle and guideway girders by considering the nonlinear forms of electromagnetic force and current exactly. For this, governing equations for the maglev vehicle with ten degrees of freedom are derived by considering the nonlinear equation of electromagnetic force, surface irregularity, and the deflection of the guideway girder. Next, equations of motion of the guideway girder, based on the mode superposition method, are obtained by applying the UTM-01 control algorithm for electromagnetic suspension to make the maglev vehicle system stable. Finally, the numerical studies under various conditions are carried out to investigate the dynamic characteristics of the maglev system based on consideration of the linear and nonlinear electromagnetic forces. From numerical simulation, it is observed that the dynamic responses between nonlinear and linear analysis make little difference in the stable region. But unstable responses in nonlinear analysis under poor conditions can sometimes be obtained because the nominal air-gap is too small to control the maglev vehicle stably. However, it is demonstrated that this unstable phenomenon can be removed by making the nominal air-gap related to electromagnetic force larger. Consequently it is judged that the nonlinear analysis method considering the nonlinear equations of electromagnetic force and current can provide more realistic solutions than the linear analysis.

A Study on the Stability of Dynamic Walking of a Humanoid Robot (휴머노이드 로봇의 동보행 안정도에 관한 연구)

  • Lee, Ji-Young;Cho, Jung-San;Lee, Sang-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.125-130
    • /
    • 2016
  • In this paper, we deal with the dynamic walking of a humanoid robot. In our method, the inverted pendulum model is used as a dynamic model for a humanoid robot in which the Zero Moment Point (ZMP) and COG constraints of the robot are analyzed by considering the motion of the robot as that of an inverted pendulum. The motion of a humanoid robot should be generated by considering the dynamics of the robot, which commonly requires a large amount of computation. If a robot walks from one position to another while keeping the ZMP in the stable region, then the robot remains dynamically stable. The linear inverted pendulum model regards the whole robot as a point mass. It is simple, and relatively less computation is needed; however, it cannot model the whole dynamics of a humanoid robot. We propose a method for modeling a humanoid robot as an inverted pendulum system having 14 point masses. We also show that the dynamic stability of a humanoid robot can be determined more precisely by our method.

A Study on composition of current stable negative resistance circuits. (전류안정부저항회로의 구성에 관한 연구)

  • 박의열
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 1973
  • This paper dealt with composition of current stable negatil'e resistance circuit based on Beam resistance of the tube SAMUEL SEBLY suggested. Beam resistance which is decreased by input current increment on definite region of current, accompanied generation of equivalent e. m. f on model circuit. With equivalent e. m. f there appeared increased current on circuit but decrease of terminal voltage. Bloc constructed by above concept induced transistorized circuit which have NPN and a PNP Transistor. Circuit operation predicted and calculated values of negative resistance are coincident with experimental results. A Circuit proposed on this paper sllowed good linearity on Ve-Ji characteristics.

  • PDF

Exhaust and Combustion Characteristics of Premixed Swirl Burner for Steam Reforming System (선회류 예혼합버너를 적용한 개질기용 연소시스템의 배기 및 연소특성)

  • Cha, Chun Loon;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.34-43
    • /
    • 2014
  • The reformer system is a method for hydrogen production from hydrocarbon fuels such as natural gas under high temperature environment($about{\sim}1,000^{\circ}C$). The premixed swirl burner with mixing swirler and combustion swirler designed to deliver fuel cell electric output from 0.5 kW to 1.5 kW. Premixed swirl burner experiments using natural gas and mixture of natural gas and anode off gas were carried out to analyse flame patterns and stability by equivalence ratio respectively. The results show that the stable swirl flame can be established for all cases of fuels type using the premixed swirl burner. The swirl flame had a wide stability region and it showed very low CO(50 ppm) and $NO_x$(20 ppm) emission at different fuel type and various equivalence ratio conditions. The operating range of premixed swirl burner for stable swirl flame is found to exist between equivalence ratio of 0.70 to 0.90 for turn down ratio of 3:1.