• Title/Summary/Keyword: Stable angle

Search Result 653, Processing Time 0.023 seconds

Solution Structure of 21-Residue Peptide (Asp 84-Leu 104), Functional Site derived from $p16^{INK4A}$ ($p16^{INK4A}$ 단백질 활성부위(Asp 84-Leu 104)의 용액상 구조)

  • Lee, Ho-Jin;Ahn, In-Ae;Ro, Seonggu;Choi, Young-Sang;Yoon, Chang No;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.494-503
    • /
    • 2000
  • A 21-residue peptide corresponding to amino acids 84-104 of $p16^{INK4A}$, the tumor suppressor, has been synthesized and its structure was studied by Circular Dichroism, $^1H$ NMR spectroscopy and molecular modeling. A p16-derived peptide (84-104 amino acids) forming stable complex with CDK4 and CDK6 inhibits the ability of CDK4/6 to phosphorylate pRb in vitro, and blocks cell-cycle progression through G1/S phase as shown in the function of the full-length p16. Its NMR spectral data including NOEs, $^3J_{NH-H{\alpha}}$ coupling constants, $C_{\alpha}H$ chemical shift, the average amplitude of amide chemical shift oscillation and temperature coefficients indicate that the secondary structure of a p16-derived peptide is similar to that of the same region of full-length p16, which consists of helix-turn-helix structure. The 3-D distance geometry structure based on NOE-hased distance and torsion angle restraints is characterized by ${\gamma}$-turn conformation between residues $Gly^{89}-Leu^{91}$(${\varphi}_{i+1}=-79.8^{\circ}$, ${\varphi}_{i+1}=60.2^{\circ}$) as evidenced in a single crystal structure for the corresponding region of p18 or p19, but is undefined at both the N and C termini. This compact and rigid ${\gamma}$-turn region is considered to stabilize the structure of p16-derived peptide and serve as a site recognizing cyelin dependent kinase, and this well-defined ${\gamma}$-turn structure could be utilized for the design of anti-cancer drug candidates.

  • PDF

Mid-Term Results of Fixed Bearing Unicompartmental Knee Arthroplasty: Minimum 5-Year Follow-Up (고정형 슬관절 단일 구획 치환술의 중기 추시 결과: 최소 5년 추시)

  • Oh, Jeong Han;Joo, Il-Han;Kong, Dong-Yi;Choi, Choong-Hyeok
    • Journal of the Korean Orthopaedic Association
    • /
    • v.53 no.6
    • /
    • pp.498-504
    • /
    • 2018
  • Purpose: To evaluate the clinical and radiological outcomes, and the complications of unicompartmental knee arthroplasty (UKA) using a fixed bearing prosthesis after 5-year follow-up. Materials and Methods: Twenty-six knees (25 patients) that underwent fixed bearing UKA between May 2003 and August 2011 were included. The subjects were 3 males (3 knees) and 22 females (23 knees), and the average age was 63.5 years. The preoperative diagnosis was osteoarthritis (23 knees) and osteonecrosis (3 knees). The mean follow-up duration was 67 months (from 60 to 149 months). The clinical evaluation included pre- and postoperative American knee society knee and function score, and range of motion. The radiology evaluation included standing antero-posterior, lateral view, and fluoroscopic film to analyze the postoperative alignment and osteolysis. Results: The mean American Knee Society knee score and function score were improved from 42.0 and 57.5 to 87.9 and 85.0, respectively (p<0.001). The mean preoperative and postoperative range of motion was $132.9^{\circ}$ and $132.5^{\circ}$, respectively. The mean femorotibial angle were varus $0.5^{\circ}$ preoperatively and valgus $2.2^{\circ}$ postoperatively. A radiolucent line was observed in 2 knees; one knee had a stable implant, while in the other knee, patellofemoral arthritis was identified during UKA. Diffuse pain of the knee joint with tenderness of the medial joint line was identified at the follow-up, so conversion to total knee arthroplasty was recommended. No other complications, such as osteolysis, infections, postoperative stiffness, and dislocation, were encountered. Conclusion: The midterm results of fixed bearing UKA were clinically and radiologically satisfactory.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).