• Title/Summary/Keyword: Stable angle

Search Result 656, Processing Time 0.024 seconds

A Research of Attitude Angle Control Structure for Thrust Vector Control of Missiles at Initial Boosting Phase (초기 추력편향제어를 위한 자세각제어 구조에 대한 연구)

  • Kim, Boo-Min;Whang, Ick-ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1523-1531
    • /
    • 2017
  • In general, the thrust vector control should be fast and stable in the initial launch phase. Two types of conventional controllers, one is for pitch angle control and the other is for pitch rate control, are designed based on the equation of motion without aerodynamics and are compared in the viewpoints of the stability margin and the time response performance. Also analyzed are the rejection capabilities to cope with high aerodynamic disturbances caused by high angle of attacks in initial booting phase. Additionally, time response features at actuator saturation are investigated. Based on those results, we suggest a controller structure which is more suitable for thrust vector control of missiles at initial booting phase.

In-Cylinder Swirl Generation Characteristics according to Intake Valve Angle (흡입 밸브 각도에 따른 실린더 내 와류 발생 특성)

  • Ohm, In-Yong;Park, Chan-Jun
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.79-87
    • /
    • 2005
  • Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare the characteristics of swirl motion generation in the cylinder. One intake port is deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake and compression stroke. The results show that the flow patterns of narrow valve engine are much more stable and well arranged compared with the normal engine over the entire intake and compression stroke except early intake stage, and very strong swirl motion is generated at the end of compression stage in this engine nevertheless using straight port which is unfavorable for swirl generating. In the normal engine, however, strong swirl motion induced during intake stroke is destroyed as the compression progresses.

  • PDF

Shape Optimization of Cut-Off in Multiblade Fan/Scroll System Using CFD and Neural Network (신경망 기법을 이용한 다익 홴/스크롤 시스템의 컷오프 최적화)

  • Han, S.Y.;Maeng, J.S.;Yoo, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.365-370
    • /
    • 2001
  • In order to minimize unstable flow occurred at a multiblade fan/scroll system, optimal angle and shape of cut-off was determined by using two-dimensional turbulent fluid field analyses and neural network. The results of CFD analyses were used for learning as data of input and output of neural network. After learning neural network optimization process was accomplished for design variables, the angle and the shape of cut-off, in the design domain. As a result of optimization, the optimal angle and shape were obtained as 71 and 0.092 times the outer diameter of impeller, respectively, which are very similar values to previous studies. Finally, it was verified that the fluid field is very stable for optimal angle and shape of cut-off by two-dimensional CFD analysis.

  • PDF

Development of Multi-Attitude Monitoring System for Agricultural Robots (농업 로봇 용 다중 자세 모니터링 시스템 개발)

  • Kwon, Ik Hyun;Kim, Cheong Worl;Kim, Sung Deuk;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2018
  • In this paper, we have developed a multi-attitude monitoring system for running farm robots for field farming. There are many agricultural robots that can select work modules for various tasks. In order to control the stable attitude of agricultural robots connected to each other, we developed a system for monitoring the roll angle and pitch angle difference by fusing the information of the attitude monitoring system mounted on the robot mainframe and the work module. The developed attitude monitoring system showed resolution below 1 degree. In this paper, roll angle difference of 20 degrees and 60 degrees is measured with a multi - attitude monitoring system.

Relationship between Muscle Activity and Kinematic Variables of the Upper Extremity during a Push-up Task on Stable and Unstable Surfaces (안정된 지지면과 불안정한 지지면에서 팔굽혀 펴기 시 상지 근활성도와 운동학적 변수간의 상관분석)

  • Yoon, Jung-Gyu
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.7-15
    • /
    • 2011
  • Purpose: We investigated the relationship between the muscle activity and kinematic variables of the upper extremity during a push-up task on stable and unstable surfaces. Methods: We recruited 15 healthy subjects. Subjects completed the push-up task on stable and unstable surfaces. Surface electromyograms were recorded from the serratus anterior, upper trapezius, latissimus dorsi, infraspinatus to monitor changes in muscle activity. Markers for kinematic changes of elbow flexion, shoulder extension, shoulder retraction and scapular adduction were attached at C7, the T7 spinous process, both acromions, the scapula superior and inferior angle, the humerus lateral epicondyle, and the ulnar styloid process. Correlation coefficients between muscle activity and kinematic variables were analyzed by SPSS for Windows, version 15.0. Results: On the unstable surface, elbow flexion and shoulder extension increased with increasing muscle activity of serratus anterior, upper trapezius and infraspinatus. On the stable surface, shoulder retraction decreased with increasing muscle activity of serratus anterior and infraspinatus. Scapular adduction decreased with all types of increasing muscle activity, regardless of the support surface. Conclusion: Correlations between muscle activity and kinematic variables were observed on stable and unstable surfaces during a push-up task, while correlations between right and left variables were not clear. These finding suggest that it may be used to develop a rehabilitation program which could be effective in improving shoulder function in patients with shoulder problems.

Boom Angle Detection Signal Pre-processing System Design for Wheel Loader (휠로더 붐각도 검출을 위한 신호전처리 시스템 설계)

  • Kim, Young Bin;Ryu, Conan K.R.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.452-455
    • /
    • 2018
  • Wheel loader performs digging and dumping tasks using boom and bucket. The operation of the wheel loader equipment has a lot of repetitive tasks and the working environment is poor, but only by hand by man. Recently, demands for applying unmanned automated systems are increasing more and more in electrical components. For automated systems, accurate angle detection is indispensable for stable control. This paper proposes a signal processing system for precise angular control with noise robust features. As a result of implementing the proposed system and applying it to the wheel loader boom angle system, it was possible to detect an angle change of about 0.1 degree.

  • PDF

Torque-Angle-Based Direct Torque Control for Interior Permanent-Magnet Synchronous Motor Drivers in Electric Vehicles

  • Qiu, Xin;Huang, Wenxin;Bu, Feifei
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.964-974
    • /
    • 2013
  • A modified direct torque control (DTC) method based on torque angle is proposed for interior permanent-magnet synchronous motor (IPMSM) drivers used in electric vehicles (EVs). Given the close relationship between torque and torque angle, proper voltage vectors are selected by the proposed DTC method to change the torque angle rapidly and regulate the torque quickly. The amplitude and angle of the voltage vectors are determined by the torque loop and stator flux-linkage loop, respectively, with the help of the position of the stator flux linkage. Furthermore, to satisfy the torque performance request of EVs, the nonlinear dead-time of the invertor caused by parasitic capacitances is considered and compensated to improve steady torque performance. The stable operation region of the IPMSM DTC driver for voltage and current limits is investigated for reliability. The experimental results prove that the proposed DTC has good torque performance with a brief control structure.

Kinematic Analysis of Marche Fente Motion in a Fleuret Attack Technique (펜싱 플러레 공격 기술중 마르쉬 팡트 동작의 운동학적 분석)

  • An, Sang-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.277-291
    • /
    • 2003
  • This study was designed to examine the kinematic factors in the phase during the marche fente motion. For this study, the subjects were 5 elite male fencing players. The direct linear transformation (DLT) method was used in calculating 3-D coordinate of the digitized body parts. The cubic spline function was used for smoothing and the kinematic data for displacement, velocity, angle variables were calculated for Kwon3d ver 2.1. And the following conclusions were drawn; 1. It show that the marche phase appeared to longer time than the pante phase In the performance time. For the fast attack, it showed that the subjects should be moving in a short stride width. 2. For a fast and stable movement posture in the marche phase, the vertical change of COG must be maintain the same position as possible, but all subjects appeared to decrease the COG because of a excessive the knee flection. 3. In the COG velocity change, all the subjects showed to the same change in both the marche and the fente phase. However in the attack extremity velocity, it increased velocity in order of upper arm, fore arm, and hand in the marche phase, but it showed different velocity among each subjects at the moment of stabbing. So that in order to do effective stabbing, they have to extend their upper extremity max and do faster the distal segment than the proximal segment. 4. It showed to take a fast and stable movement, because some subjects showed the big anteroposterior angle of the trunk flexed max shoulder angle and elbow angle of their attack arm and the other upper extremity.

Accurate Fastening of Blind Rivet Nuts: A Study (블라인드 리벳 너트 체결 적합성에 관한 연구)

  • Kim, C.;Gu, B.;Yi, S.;Choi, J.M.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.331-337
    • /
    • 2020
  • Blind rivet nuts (BRNs) are increasingly used in automotive industry because unlike conventional bolt fastening, BRN fastening requires access from one side only. Generally, fastening is conducted using automated units, but manual fastening may be resorted to in case of small quantities. Since the fastening direction is not exactly perpendicular to the sheet metal, the BRN axis is tilted with respect to the plate and may result in damage or incomplete fastening. As the tilt angle (clamping angle α) increases, undesired plate deformation occurs and the contact area of the plate with the BRN fastening area decreases, reducing the clamping effect. In this study, the reduction of the clamping effect with the α was investigated to ensure stable fastening force. M6 BRNs were used in the tests. The fastening force was measured as follows: the plate was cut in half through the center of the hole; the BRN was inserted into the hole and fastened; and the clamping angle a was measured (values, 0° ≤ α ≤ 9°). The force leading to the separation of the halves was measured using a universal testing machine (UTM). The maximum α range, in which the fastening force remains stable, was determined. Finite element (FE) analysis confirmed that the fastening force decreases approximately linearly with increasing α. Based on the experiment and FE analysis using various α, the fastening force was found to decrease with α. Further, the maximum tolerance for α that provides secure fastening without damage is suggested.

A Study on Stable Grasping Motion Control of Dual-Finger (듀얼-핑거의 안정적 파지 운동 제어에 관한 연구)

  • Um Hyuk;Choi Jong-Hwan;Kim Seung-Soo;Han Hyun-Yong;Yang Soon-Yong;Lee Jin-Gul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.81-88
    • /
    • 2005
  • This paper attempts to derive the dynamic model of handling tasks in finger robot which grasps stable and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, the roblems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. The effect of geometric constraints of area-contacts between the link's end-effector and the object is analyzed and the model based on the differential-algebraic equations is presented. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation and the experiment that the control system gives the performance improvement in the dynamic stable grasping and nimble manipulating of the dual fingers robot with soft tips.